High Altitude Long Endurance Aerostatic Platforms:

The European Approach

Per Lindstrand – Lindstrand Technologies Ltd. Peter Groepper - ESA Dr. Ingolf Schäfer - CargoLifter

HALE History

Additional Year Contractor Payload Altitude Duration Outcome Information 1958 8 hours **General Mills** 100 kg 18 – 20 km Study only _ 1970 Raven nil 20 km 2 hours 1 flight only -High Platform 2 1976 Martin / 100kg Hangar ---HASPA Sheldahl testing only 1982 21 km No flight Lockheed Gross weight 30 days 4 piston Hi-Spot Martin 11.7 tonnes engines 1992 Halrop nil 10,000 feet 4 short duration _ Japan Science flights Foundation LTL 600 kg 21 km 1995 5 years Sky Station telecom No flight platform 2004 JAXA/ NICT 13,000ft 1 flight Severely 100kg 5 years underpowered 2011 Lockheed 500kg 21 km 2 hours 'crashed & Martin burned'

Lindstrand Technologies Involvement

Sky Station 1996–1998

Bespoke cell phone station created by General Alexander Haig

European Space Agency 1998–2000

Development contract in partnership with Daimler-Chrysler Aerospace

Körber Prize 1999

Yearly award for science and engineering. Shared with University of Stuttgart

Kawasaki Heavy Industries 2001

Funded by Japanese Science Foundation

Stratospheric flight

Trends in Aeronautics:

- Stratospheric flight offers opportunities nearly as broad as space flight.
- Today the potential of stratospheric flight is largely untapped, but in the future they will be complementary completion to spacecraft in a large variety of applications.

Stratospheric long endurance platforms :

- can be placed within the atmosphere in a geo-synchronous position.
- are under research since the late 1950s.
- could now be made simpler, lighter and more reliable because materials and key systems have been improved since the early days.
- are now within reach.

Stratospheric Platform Categories

Lindstrand

Aerostatic (vs aerodynamic) systems:

- long term missions (mission duration measured in months or years)
- payload capability
- safety
- geo-stationary positioning
- wind sensitivity
- new infrastructure

Stratospheric Platform Characteristics

Communications

Fraunhofer Gesellschaft, Erlangen, Germany

Services:

- Cellular phone (S-UMTS)
- Metropolitan Area Network
- Remote Monitoring
- Passenger Information System
- Digital Broadcast

Mission requirements:

- High availability
- High reliability
- Station keeping
- Long term missions (5 years)
- Very high commercial potential

Remote Sensing

Remote Sensing Research Group, DLR - Adlershof, Germany

Services:

- Coastal monitoring (multisensorial, spectroscopy, radar)
- Disaster monitoring (forest fire, flood, volcanic activities)
- Land use (Calibration of satellite data, detailed analysis)
- Mission requirements:
 - Patrol and station keeping
 - Different flight altitudes (10,000-25,000m)
- Very high scientific interest Medium commercial potential

Science - Astronomy

Institute of Astronomy, Ruhr-Universität, Bochum, Germany

- Research areas:
 - Infrared (IR)-observation
 - Far-Infrared (FIR)-observation
 - Pre-cursor mission for a stratospheric observatory
- Mission requirements:
 - Payload mass at least 1.000 kg for a 1.5 m telescope
 - Long term missions
 - More floating than geo-stationary positioning
- Expected results:
 - Comparable with a 2.5 m airborne telescope (SOFIA)
 - Comparable with HST

Environmental conditions - stratospheric winds Lindstrand GI Wind conditions at 50 hPa pressure layer in summer (June, July, August) 1983-1995 20 average wind speed (m/s) max. wind speed (m/s)

Environmental conditions - stratospheric winds

Wind conditions at 50 hPa pressure layer in winter (Dec, Jan, Feb) 1983-1995

Environmental conditions - vertical wind profiles

Schleswig / Germany

Munich/Germany

Current Platform Design - European ESA-HALE concept

Design

- Non-rigid structure
- stern propeller gimballed
- DC-Engine brushless
- Thin-film solar cells
- regenerative fuel cell

Performance

Altitude:	21,000 m
• Speed:	25 m/s
 Mass payload: 	1,000 kg
Energy payload:	10 kW

System characteristics

220 m
55 m
20,800 kg
320,000 m ³
90 kW

Development concept

Evolutionary approach

- First demonstrator (D15)
- Second demonstrator (D20)
- Pre-Series

Risk reduction

- Staggered approach
- Clear defined functionality for demonstrators D15, D20 and Pre-Series
- Use of state-of-the-art technology

Development concept - HALE cornerstone missions

TECHNOLOGIES 1. Demonstrator D15 **Pre-series PS** 2. Demonstrator D20 (principle) (capability) (functionality) system operations **Objectives** inflation high-accurate transit station keeping testing, production, demonstration long term machinery operations station keeping ground infrastructure flight time 72h + high altitude -

ocus	platform	payload	services
What to learn?	 aerodynamic and flight mechanics data environmental conditions (wind speed, - direction, forecast, accuracy superpressure/ superheating structural loads 	 recovery strategies payload flying parameters reference applications 	 manufacturing optimization cost reduction
	medium altitudeP/L recovery	 recovery of key system & P/L 	 service reliability recovery procedure

Development concept - schedule & technologies

Development concept - platform parameters

	volume	length	mass _{sys}	mass _{pl}
D15	16.000 m ³	80 m	2.700 kg	100 kg
D20	180.000 m ³	180 m	12.600 kg	500 kg
PS &series	320.000 m ³	220 m	20.800 kg	1.000 kg

+ technology research

Industrial Initiative

With Astrium GmbH (former DaimlerChrysler Aerospace) and Lindstrand Technologies Ltd.

a team has been established which:

covers all aspects of stratospheric aerostatic platforms from design and manufacturing up to operations.

accepts the global challenges and intends to become one of the world's leading providers of stratospheric aerostatic platforms

believes in the success of stratospheric platforms.

The vision

Source: Eriksson Microwave Systems, Stockholm

We assume the HALE payload being capable of handling 50,000 simultaneous phone calls.

Typically, in a larger city each subscriber during daytime 0.05 Erlang, I.e. will use the telephone for 20% of the time.

This translates into 50,000/0.05 = 100,000,000 which is the total number of subscribers the HALE airship can service.

If we assume each subscriber will phone for £1.20 (the average mobile user in Stockholm) per day one airship will generate 1,000,000 x £1.20 = £1.2M per day in traffic income and per year 365 x £1.2M = £438M.

HALE D-20 DESCRIPTION

- General Overview
- Aerodynamic Layout
- Lift Control
- Electrical Layout
- Power Management
- Operations
- Regulatory Issues

Atmospheric conditions at 20km altitude

Pressure	50mbar
Temperature	-56ºC
Atmospheric density	0.088 kg/m³
Gas expansion	13.8
Helium lift	0.076 kg/m³

Operational States

Control Surfaces for long-term flight control (dynamic lift, orientation towards sun)

Three-axis-control (roll for solar power optimisation)

Gimballed, feathered propeller for short-term flight control

Envelope pressurised during ascent

Controlled expansion of gas via special designed diaphragm

On lift off the envelope contains less than 10% of helium gas

Pressurisation during descent defined max. sink speed

Operational Phases

These data define the operational data for D- 20. Design data including safety margins tend to have larger figures. Operational Limits	Sign convention, Remarks Unit	Assembly	Move to Launch Site	Launch	Ascent	Approach to Demonstration Site	Demonstration & Test	Departure	Descent	Desintegration
max. horizontal speed (IAS)	positive: stream m/s from front	NA	5	5	10	25	25	25	10	2
min. horizontal speed (IAS)	positive: stream m/s from front	NA	0	0	5	5	0	5	5	0
vertical speed range	positive: ascent m/s	NA	0	0 2	2 5	2 5	0 2	2 5	2 5	TBD
Altitude	(reference: CR m (centre of reference))	NA	10 AGL	10 100 AGL	100 AGL 20000 MSL	10000 MSL 20000 MSL	20000 MSL	10000 MSL 20000 MSL	1000 AGL 20000 MSL	0 AGL 1000 AGL
min. altitude accuracy	(goal) m	NA	2	2	50	100	100	100	50	50
min/ max. attitude (⊜)	positive: nose ° up	-10/10	5	0/30	0/90	0/10	-10/10	-10/5	-90/90	-90/90
min/max pitch (AOA)	positive: nose ° up	0	-5/5	0/5	-10/10	-10/10	-10/10	-10/10	-10/10	-10/10
max. pitch rate	°/sec	10	10	5	5	5	5	5	5	5
max. yaw angle	(side slip angle) °	10/10	5	5	5	5	5	5	5	5
max.yaw.rate	°/sec	10	10	5	5	5	5	5	5	5
max. roll angle	(bank angle) °	120	30	30	20	10	10	10	20	30
max. roll rate	°/sec	10	10	10	10	10	10	10	20	30
max. gas temperature difference	TBD K	10	20	20	20	30	30	30	30	30
max. static heaviness	% of total ma	ss 100	100	5	5	5	5	5	5	5
max.static lightness	% of total ma	ss 100	10	10	5	5	5	5	5	5

Environmental Limits

TECHNOLOGIES preliminary environmental conditions Demonstration & Test Move to Launch Site Approach to Demonstration Site Desintegration Departure Assembly Descent aunch Ascent

				Entering the second second second second second second						
max. ambient air	°C	25	35	35	35	-40	-40	-40	35	35
temperature										
min. ambient air	°C	10	5	5	5	-65	-65	-65	5	5
temperature										
max. steady wind speed	m/s	2	3	3	10	10	15	15	10	5
horizontal										
max. up & down draft	m/s	1	2	2	2	2	8	2	2	2
3sec										
3 min	m/s	1	2	2	2	2	5	2	2	2
max. allowed thermal (weak <1	m/s CHAR	weak	weak	weak	weak	weak	weak	weak	weak	weak
effects vertical w	vind									
speed,										
moderate	e									
humidity range <2.5m/s,	strong % rel.	080	080	080	080	020	020	020	080	080
dynamic stability of the (stable.	CHAR	NA	stable	stable	stable	stable	stable	stable	stable	stable
atmosphere unstable)										
lightning conditions TBD	CHAR	no	no	no	no	no	no	no	no	no
rain (light, me	dium. CHAR	no	no	no	no	no	no	no	no	no
heavy)										
hail TBD	CHAR	no	no	no	no	no	no	no	no	no
extreme gusts	CHAR	no	no	no	no	no	no	no	no	no
microburst	CHAR	no	no	no	no	no	no	no	no	no
extreme up / down drafts	CHAR	no	no	no	no	no	no	no	no	no
· ·										
extreme turbulences	CHAR	no	no	no	no	no	no	no	no	no
extreme wind shear TBD	CHAR	no	no	no	no	no	no	no	no	no
wet snow	CHAR	no	no	no	no	no	no	no	no	no
hoar frost	CHAR	no	no	no	no	no	no	no	no	no
extreme pressure	CHAR	no	no	no	no	no	no	no	no	no
gradient			fan fund fan sjone							
extreme sudden 10K/min	CHAR	no	no	no	no	no	no	no	no	no
temperature changes										
sand	CHAR	no	no	no	no	no	no	no	no	no
corrosion	CHAR	no	no	no	no	no	no	no	no	no
EMC conditions	CHAR	no	no	no	no	no	no	no	no	no
icing conditions (light,	CHAR	no	no	no	no	no	no	no	no	no
moderate	∋,									
heavy)										
min. ambient air densitiy	ISA +°C	10	20	20	20	20	20	20	20	20
max. ambient air densitiy	ISA -°C	5	10	10	10	10	10	10	10	10
	CLIAR	NLA		20						

'Flight Box'

Vertical:	+/- 500 ft
Horizontal:	
Lateral:	+/- 1500 m
Longitudinal:	+/- 1500 m

Lindstrand

TECHNOLOGIES

Technical Realization

Envelope: LTL design, based on 20 years of experience

Propeller: Efficiency-optimised design, two-bladed (University of Delft)

Motor: Efficiency and Reliability driven, direct drive for propeller

EC-motor with rare-earth magnets, external rotor (University of Biel)

Rigid fins with control surfaces

Thin-film solar cells on polymer substrate

COTS electrolyser, weight-reduced and adapted for operational conditions

PEM fuel cell

Main Dimensions

Weight Status

13968 kg Status: specific weight Component size Mass 20752 m² 0,3 kg/m² 6226 kg envelope 10376 m² 519 kg 0.05 kg/m^2 diaphragm 2,00 kg/m² 971 m² 1941 kg fins 320 kg 80 KW 4 kg/kW propulsor 3200 m² 0,25 kg/m² 800 kg solariarray 825 kg 150 KW 5,5 kg/kWh fuel cell 180 KW 990 kg electrolyser 5,5 kg/kWh 1,5 nights total gas storage 61 kg hydrogen storage 487 kg oxygen storage power distribution 800 kg systems and installations 500 kg 500 ka payload

Aerodynamic Layout

- Based on NASA I-YT design (Mc Lemore)
- Confirmed data for lift, drag and pitch
- Wind tunnel data for pusher propeller
- Propulsive efficiency data

Drag Components

Aerostatic Layout

Lift Variation:

- Regenerative fuel, gaseous storage: 13000 N (max. buoyancy + weight of burned fuel)
- Gas superheating without counteracting: 30K = 20000 N
- Night cold soak: 20K = 13000 N
- Total lift control demand: 40000 N max.
- Note: max. lift demands (fuel, heat, cool) do not occur simultaneausly

Compensation:

- Convective heating/ cooling: fly faster than wind speed requires
 - ⇒ limits superheat to 15K max. = 10000 N
 - ⇒ limits cold soak to 10K max. = 6500 N
- Superpressure: Limit excess lift by increased gas pressure
 - ⇒ Lifting gas: compensates remaining superheat (∆p = 520 Pa)
 - ⇒ Regenerative fuel gas: limits excess lift at evening (∆p = 520 Pa)
- Dynamic lift: +/- 7000 N (=+/- 5% of total lift) for remaining lift variation

Lindstrand G **Dynamic Lift at 10° AOA** 18% 250 16% 200 14% Dynamic Lift/ Total Lift Power Demand [kW] 12% 150 10% 8% 100 6% Sprint Speed 4% 50 D-20 Design Point 2% 0% 0 15 10 20 25 0 5 30 Speed [m/s]

Dynamic Lift Performance/ Power Demand

Speed Limits

Electrical Arrangement (1/2)

Electrical Arrangement (2/2)

Energy Balance

L	j	n			S ⁻	tı	ra	A	r)(d	
т	Е	C	н	Ν		L	0	G	I	Е	5	-

thrust power	31	KW
	a de transie	
propeller eff.	76	%
propeller input	41	k₩
engine eff. (incl.	90	%
transmission losses)		
engine input	46	KW
systems power	5	kW
payload power	5	KW
power input	56	kW
fuel cell efficiency	50	%
max. fuel cell input	112	ΚW

night duration	12	hrs
day duration	12	hrs
stored energy amount	1338	kWh
gas power density	33	kWh/kg
required hydrogen mass	41	kg
required oxygen mass	324	kg
electrolyser efficiency	75	%
max.electrolyser input	149	kW
transmission losses	10	%
solar cell output	184	k₩
cell efficiency	8	%
incidence losses	20	%
solar radiation	1000	W/m ²
solar cell area	2875	m²

Data Handling Systems Architecture

.

Vectran® is a high-performance multifilament yarn spun from liquid crystal polymer (LCP).

Vectran® is the only commercially available melt spun LCP fiber in the world.

Vectran® fibre exhibits exceptional strength and rigidity.

Pound for pound Vectran® fibre is five times stronger than steel and ten times stronger than aluminum.

These unique properties characterize Vectran®:

High strength and modulusExcellenHigh abrasion resistanceExcellenMinimal moisture absorptionExcellenHigh dielectric strengthOutstandLow coefficient of thermal expansion (CTE)ExcellentExcellent property retention at high/low temperaturesOutstanding vibration damping characteristicsHigh impact resistanceHigh impact resistance

Excellent creep resistance Excellent flex/fold characteristics Excellent chemical resistance Outstanding cut resistance

Vectran's major drawback is that it costs 3 times more than Kevlar.

Vectran Applications

Properties of Vectran Fabric

Airship Fabric

Regulatory Issues

Certification Standards for Airships:

- Current standard BCAR Section Q
- Soon to be replaced with EASA CS 30 N

Flight Rules:

VFR - IFR

Traffic Priority:

- Airships have right of way against all other traffic
- No need for see and avoid capability

Budget

ITEM	VALUE	UNIT COST	TOTAL
Envelope	20,000m ²	\$250/ m ²	\$5 million
Fins	1,000kg	\$1000/ kg	\$1 million
Flight Controls	Unit	-	\$1.5 million
Propulsion	46kW	\$50,000/ kW	\$2.3 million
Solar Array	300kW	\$10,000/ kW	\$3 million
Fuel Cell	150kW	\$30,000/kW	\$4.5 million
Electrolyser	180kW	\$15,000/ kW	\$2.7 million
		SUB TOTAL	\$20 million
Flight Operations	Package		
System Integration	Package		\$2 million
Ground Support	Package		
Programme Management	Package		
		GRAND TOTAL	\$22 million

Conclusion

D-20 Design existent:

- Aerodynamic
- Aerostatic
- Propulsion & Power Management
- Structural Concept
- Operations
- System Requirements and Specs

Usage of mature technologies

Risk minimisation

Lindstrand

LOGIES

PRODUCTION PROCESSES AND TECHNOLOGY

Fabric Inspection

Fabric Inspection is a key tool in determining the quality of the fabric supplied to Lindstrand Technologies.

Material is loaded onto a roller system that unwinds the fabric and passes it across the inspection table. The table has the facility to back light or top light the fabric. Fault diagnostics are recorded directly onto the integrally mounted computer. The inspection logs form critical data in subsequent project files as the material is consumed in the manufacture of company products. The final stage on the inspection table is to automatically re-roll the fabric for ease of handling.

Fabric Cutting

There are 2 cutting tables at Lindstrand Factory.

Both have operating length of 21m, width of 1.8m and 3m. Machines can cut at approximately 60m/min and have a cutting accuracy of +/-0.2mm.

They are both capable of working with a wide variety of fabrics including PU's, PVC and the more exotic Kevlar and Vectran.

Helium Leakage Testing

This is a unique testing machine purpose built by Lindstrand.

It is based on a mass spectrometer. The underside of a fabric sample is pumped down to near vacuum. Helium is then injected on top of the sample, and any penetration is picked up by the mass spectrometer.

This machine can carry out a full helium leakage test in less than 14 seconds.

Fabric Welding

High Frequency Welder:

High frequency welding is performed by 2 Fiab machines. The original machine has a moving table and the new gantry mounted machine allows for all manufacturing angles.

Hot Air Welder:

Hot air welding is currently the main method of joining materials in the production environment. Three purpose built welding machines are used on site. Each machines jets hot air onto the joining surfaces of the fabric with an operating temperature of between 200C°-650C° which are then pressed together at 7 bar.

Fabric Welding

Hot Wedge Welder

A hot metal wedge radiate the heat into the fabric which is then pressed together by two rollers. This is a self propelled machine but can only be used for straight runs.

Ultrasonic Welder

This is a hand operated machine that is used primarily for repair work. It operates at 36kHz and is also used for reactivation of sheet adhesives.

Laser Welding

900 nm wavelength