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ABSTRACT

Human models have been studied and used in engigesralysis for over 70 years to
allow predictions of the pilot-vehicle system beloavThe difficulties in pilot modeling
are evident due to the complexity of the brainklatrepeatability in behavior and the
great number of variables that can affect the humperiormance. This complexity,
associated with the fact that there are no exgdhevs to allow modeling based in first
principles, could indicate that data-driven modglirechniques would be the most
efficient way to obtain pilot models, such as blaox system identification methods
that construct dynamic models according to measu@at and output data, and where
the parameters have no physical meaning. Withaghygoach, it is advantageous to seek
knowledge from other fields to allow a better ursti@nding of the pilot behavior, select
adequate input/output variables and define the raxpatal conditions and data.
Criteria for evaluating the modeling approachesluite adaptability as well as
feasibility. Adaptability concerns coping with dyne and uncertain conditions and
feasibility refers to the models contribution to @pplied context. This paper presents
the results of the application of data-driven tle¢ioal linear dynamic models in the task
of representing the behavior of the pilot trying<eep the centerline of the runway after
an engine failure. Real data is used, where PID witti-windup and Hammerstein-
Wiener model structures are compared. Results shatvthe Hammerstein-Wiener
structure seems more appropriate to represenspleisific behavior.

1. INTRODUCTION

Aircraft design as all other complex systems desgyon a continuous trend of
increasing the use of modeling and simulation tephes. The goal of this trend is to be
able to detect design issues as early as possibikei product lifecycle in order to

reduce costs, shorten time to market and increaairity on entry into service.

Simulation has shown to be an efficient tool foatfhallowing performing tests and
validations before even the first metal cut, anddidition to that, to perform automated
tests in a scale that would never be possible wittite use of computers.

It is known, however, that human operators shoeldgom a large part of the modeling
validation. This does not diminishes the part oflgling and simulation in bringing test
capabilities to early stages of the design as sitianl with the pilot in the loop are
widely used in the industry. But the need for thitpin the loop prevents from
automating tests and performing them in a largéescansequently. In such scenario,



the need for a mathematical representation of theam pilot arises. It is evident that
science is very far from being able to representh& complex human behavior with
mathematical equations, but in some specific cases,possible to isolate a specific
action that is required for an engineering testhi$ is possible, it is also possible to
automate tests that require that specific humanaweh by implementing a
mathematical abstraction of the pilot’s actions.

Mathematical models of the human pilot are not t@wscience; in fact, they have been
used for over 70 years to allow predictions of thot-vehicle system behavior

(McRuer, 1967) with linear and quasi-linear modélsose models evolved to optimal
control models in the 1970s by Wierenga (1970) Kieinman (1969), and then to

nonlinear models such as Hess’s proposal of 'mulsintrol behaviour' (1979). Other
disciplines in addition to control, from biomecheadiand vibration analysis to sensorial
and perception have also been using pilot modedsieLand Cooke (2014) did an
extensive review of those models.

Although all this development has been made, thsie in the well established
Validation & Verification process from the SysteBsgineering perspective appears to
be quite new. Regarding the difficulty of model igation, Lone and Cooke (2014)
already mentioned this: regardless of the abstmactone to obtain the model, it could
never be validated against the pilots mind, onlthve black box approach. Still, the
abstractions of the pilots’ minds are useful, beeathey are necessary - at least - to
identify inputs and outputs. Yet, the mathemat&talicture is flexible and validation
metrics should be taken into account to deternfieent

Human-in-the-loop simulator based design has bsed by the aviation industry since
the 1970s for cost effective, safer design andticrgapplied knowledge early in the
design process (Alm, 2007). Pilots in simulatora b& used both in the process of
generating a model for a specific scenario andvadidating the model. This paper
proposes to explore this approach to a specific ttegt is ucec (Minimum Control
Speed on the Ground) determination of an aircraft.other words, the behavior
modeled is the rudder pedal input by the pilotgaation to an engine failure, in order to
maintain the runway centerline. The scope is tolyap@ata-driven techniques, more
specifically the ones based on the formalism ofesysidentification, to identify a pilot
model based on data. Real human pilots on an #inweae used to generate datasets;
then models were generated and validated in a atronlenvironment, reproducing the
maneuver. The contribution of this work is evalogta new form of obtaining pilot
models with little or no previous use, and allowittgguse those models to automate
systems development tests that otherwise wouldireguhuman pilot in the loop and
an expensive infrastructure.

This paper is organized as follows: Section 2 dostathe behavioral model
development rationale, Section 3 presents thetseant discussion using the identified
models; the conclusions and further work are theesds of Section 4.

2. BEHAVIORAL MODEL DEVELOPMENT

This section consists of four parts. First, theseai discussion on the cognitive
architecture and process performed by the human g@iring the event of an engine
failure during takeoff. This is required in orderitlentify the relevant parameters that
should be considered as inputs/outputs and thetsteuof the model. The discussion on
the design of the experiment to obtain data forideatification process is the content



of part two. Data already available from other ekpents and flight tests are also
considered. Third, the data obtained from the ewpart execution is qualitatively
analyzed against the real data and data usagdatecese made. Fourthly, the model
identification possibilities and adaptations to ##ucture and representation are
discussed. The model developed, its validationraadlts are presented in Section 3.

2.1 Cognitive architecture and its influence on the model structure and
representation

As stated earlier, the model to be identified ippased to represent the human pilot
behavior only in the specific scenario to be anadlyzThis scenario is a takeoff run
followed by an engine failure with corrective pilotputs to minimize the runway
centerline deviation. Figure 1 shows the physia®lved in this situation for a dual
engine aircraft, that is, how the thrust asymmegeperated by failure of one of the
engines creates a yawing moment due to the distahtlee working engine to the
aircraft centerline. The 30 ft deviation shown iig¥e 1 is a reference to the
certification requirement that states the maximwwiation from the runway centerline
following and engine failure should be 30 ft (FAE)02). This value is used to define
the aircraft \{jcc that, in turn, impacts on minimumi\Mvhich has an influence on
aircraft performance. In other words, this showsv himportant it is for the design to
guarantee that the pilot is able to maintain thesximum deviation and illustrates an
automatic test that could be used in early deslgases, where aircraft tail volume and
other characteristics are feasible to change.

Engine Failure

I 30 ft deviation

Rudder input

Figure 1: Centerlinedeviation dueto enginefailure

Within the described scenario, the questions relet@the cognitive architecture (and
consequently to the pilot model identification) :andich are the variables the pilot is
monitoring? How does s/he uses each one of themnoess his/her reaction? What is
the difference considering dual and single piloerations? Which equipment such as
head up display affects his/her performance and?hbwtially, a single variable is
selected and the model is based on it. Later contplenay be added to the model in
order to make it more accurate and representafives, the model proposed is a single
input single output model as depicted in Figure 2.
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Figure 2: Single Input Single Output Pilot M odel

The model output is the rudder pedal displacemieat,the input the pilot uses to
process his/her reaction is not trivial to enuner@n the one hand, one could think of
using as input the centerline deviation, but it wiescarded because although the pilot
tries to minimize it, s/he is not really controdjiit to a defined set point, as long as the
aircraft is aligned with the runway. On the othemd, the angle between aircraft
heading and the runway centerline is controlledetoain zero by the pilot. It seemed
like a good selection, but since it requires the of the runway heading which is
"outside" of the aircraft, it would inconvenient implement from the modeling
standpoint. Therefore, the alternative was to hseyaw rate that does not depend on
variables on other referential systems. Intuitiyéiye pilot reaction appears to be linked
primarily to the yaw rate, rather than to the ariggéwveen the centerline and the aircraft
nose. The drawback of this choice is that the yate set to zero does not imply that the
aircraft is aligned with the runway. Convenientllgis is solved simply by using the
integral of the yaw rate, which is null wheneves 8imulation begins with the aircraft
aligned with the runway and retains the featurapgarent proportionally to the pilot’s
reaction.

Another important consideration is the mathematregdresentation to be used. For
instance, is the pilot response a linear with thlected input? As already mentioned,
PID models have been used to represent pilot behawiplying that the response is
linear, but could it be represented by anotheralinepresentation such as an ARX
(Auto Regressive with Exogenous Inputs) model?dditaon, it seems intuitive that a

human operator is able to adapt to rapidly changorglitions switching the “gains” or

even the "structure" of the model.

Additionally although most of the dynamic behavioay be linear, there might be
inherent non-linearity to the man-machine interfaé®r instance, in the model
proposed herein there is at least one static neanlity which is a saturation of the
rudder pedal output imposed by its mechanical soplp could be argued that this
circumstance originates from the aircraft, not philet. It could be considered that the
pilot intuitively increases the force against thed@l stopper hoping that the "rudder
would deflect more™ (this behavior can be seenaitydife events, like when using a
remote control with low battery, where we presshib#on strongly hoping the TV will
respond!). As the pilot is readily able to revers/lher command when the desired
response is achieved, s/he does not appear ta sofégration windup effects, thus
when using PID-like structures the model would neethcorporate at least some kind
of anti-windup feature.

As an initial approach, after data collection twiiedent mathematical representations
were tried: a non-linear Hammerstein-Wiener mocdhel a PID with anti windup. All
data processing was performed off-line using a cemial software package
(MATLAB™ 2015b, 2015).The identification algorithnvgere obtained in the System
Identification MATLAB™ toolbox.



2.2 Design of the experiment

Having defined the input as the [Yaw Rate Integaalfl the output as the [Rudder Pedal
Displacement], the difficulties in designing andoexment for pilot identification are
still numerous. From the strict system identifioatipoint of view, the input signal
should be persistently exciting, so that all thegfrency and amplitudes responses of
interest are exited (Aguirre, 2015). Since thereaibBuman pilot in the loop of the
experiment, it is unpractical and too expensivpddorm a large number of test points.
Also using complex and random input signals would \ery far from the real
operational scenario of interest, which is, bagica large 'step-like’ moment on the
aircraft due to an engine failure or crosswind ggeberating a deviation from the
centerline. In scenarios like this, engineeringgimént and prior knowledge is used to
design the input signal. Those considerations iangations to be taken into account
during the use of the model (Billings, 2013).

Other variables potentially affecting the experitesults should be controlled and the
ones that cannot be controlled should be randonigieshtgomery, 2001). Based upon
previous practical experiments, it has been decitteckeep fixed the following
variables: Aircraft type; Wind conditions = zeradailot.

The variation from pilot to pilot is indeed a vdii@ of interest, but at this stage of the
research, the goal is to confirm if an acceptablyr@sentative model for a given pilot
can be identified. In addition, there are evideniceJuretta (2013) that well trained

pilots do not have such a large variation in penfance.

The speed at which the engine failure occurs is afsgreat interest as it has a very
complex relationship with the pilot and the airtrasponse. At greater speeds, the pilot
will probably be more vigilant, but the rudder ef@incy will be greater and so will the
yaw rate at the moment of the engine failure. Pinmpts the following questions: will

a model identified in a range of speeds work ifedént speed ranges? Should the
model identification be carried out at differeneeds? If so, how to accommodate this
requirement with the system identification techis(el

Based upon the considerations above, the desigestiment consists of a simulated
takeoff with engine failure, with a human pilottime loop, as detailed in Table 1. This
design is advantageous as it is a normal procedaireed in flight simulators by pilots
as well as it is representative of a real operatisnenario.

Table 1. Experiment data sample.

Test Parameters Test Results
Pilot Engine Failure speed Rudder Input Yaw Rate
70 [kts] Time series X Time series X’
80 [kts] Time series Y Time series Y’

Pilot A

90 [kts] Time series Z Time series Z’




2.3 Experiment execution and real flight test data

Real data from flight tests was used in the modehtiification Two suitable sets of
rejectedtakeoffs were selected for tlpresentstudy. They were all performed by t
same pilot (an experienced flight test f with approximately 6000 flight hot), on the
same day, in theame aircra and same environmental conditions.

2.4 Modédl I dentification

With the yielded data, the first approach to id@cdtion was to usthe Least Squares
method (Luenberger, 1996) to identify a polynommabdel, but this was prove
ineffective and the two approached bellow were 1

Nonlinear Hammer stein-Wiener Model

The proposed system has a static non linearitigeabtitput, which is the saturation ¢
to the rudder pedal mechanical stopper. This canrd@esented by using
HammersteinAiener model whichkcomposed of a linear dynamgystem with twc
static nonlinarities at its input and outy. Figure 3represents the model structi In
the present case, we set solely the input nonityess a saturatic.

—— f() HZY) 1 &() [

u(t) ~ lylt)

Figure 3: Hammerstein-Wiener model structure. Note that the dynamic part is
linear. The nonlinearities are defined by both static functionsf(.) and g(.)

As for the order of thdinear part of the mod, Tustin (1947) proposed that a F
controller could emlate the human pilot behavior, and thabrmation was used as
first estimative for the model order (equatio.

PID anti windup model
It is possible to represent a PID as a discretiereiice equatic. The discrete PIL
equation using backwatuler (Ogata, 1995) i

K;Tsz N K;(z—1)

= 1
C(z) KP+Z—1 T2 1)
which can be manipulated in
U(z) by+ bz t+byz?

E(z) ay+a;z7l+a,z2

where:

bo = K,(1+ NTy) + K;Ty(1 + NT,) + KN



by = — (K,(2 + NTy) + K;T; + 2K,4N)
b, = K, + K4N

a, = (1 + NT,)

a; = —(2+ NTy)

a, =1

which can be rearranged to:

a, a by by b,
ulk] = ——ulk—1] — ——ulk — 2] + —e[k] + —e[k — 1] + —e[k — 2]

a, a, a, a, a, (3)
Equation (3) can be used with identification teclueis in order to obtain the parameters
that multiply u(k-1), u(k-2), e(k), e(k-1) and eZh-

In order to use the discrete PID , a model with-aimdup was implemented and a
global optimization algorithm was used to try tbtfie data to the structure, identifying
the values of Kp, Ki and Kd. The anti windup wasplemented by checking if the
control action has reached the saturation valug jfandid, zeroing the integrator input.

The results of the identification based in the nhosteuctures aforementioned are
presented in the Section 3.

3. RESULTS AND DISCUSSION

In this section, the results from the identificatiprocedures are shown and discussed.
The two data sets depicted in Figure 3 were usdbdmrocess, one for identification
and the other for validation of the model.

Identification Data Validation Data
30 T T T 30 T T T T

I

25 25 |

20 f ‘ \\\\\
20 |

0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 450 500

Figure 3: Datasetsused in theidentification process.

Non Linear Hammerstein-Wiener (NLHW) model
The initial NLHW model prompted good results witts fof almost 80% as can be seen
in Figure 4.
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Figure4: NLWH model (3/2 order).

The orders of the model above were selected to ortap Equation (3), but the
coefficients did not match the structure — the gautentified with the least squares
method did not reflect the relation between thdfeoents a a, & by, by and b (notice
that all coefficients are divided by)aThis means that even though the identified model

may have a good fit to the data (meaning it dogesesent the behavior), it does not
necessarily behave as a PID controller.

Table 2. Fitting characteristicswith different orders.

NLHW Compared with

Identification data

Orders 3/2 Orders 4/3 Orders 5/4 Orders 6/5

Correlation=0.9800 Correlation=0.98! Correlation=0.9915Correlation=0.9821

R%.0.9590 R?=0.9610 R?.0.9829 R’=0.9624
Fit=79.76% Fit=80.24% Fit=86.91% Fit=80.61%

Since the PID structure was not necessarily folthvem attempt to raise the order of the
model was made and better results were attainedrabe seen in Figure 5. Raising the
model order increased the fit up to a certain p@ifth order for B(z) and fourth order

for F(z) ), and from that point on the fit woulddtto decrease again as can be seen in
table 2.
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Figure5: Higher order (5/4) NLWH model.

When the model identified was applied to the vaiata dataset, the fit decreased

considerably. Figure 6 shows the higher order mdaeh Figure 5 applied to the
dataset of Test 3.

Time Response Comparison

T T T T

T

compareData (y1)
) OPilotModel: 20.37% | -

Amplitude
y1
n o

N
o

-15

-20 @J L L L

18 20 22 24 26 28 30 32 34
Time (seconds)

Figure 6: Higher order NLWH model from Figure 5 applied to validation data.

The decrease in the model fit is expected due toym@asons such as signal noise and
fitting issues, but considering that the objectngemodeled is a human, it is highly
expected that the reaction would differ slightlprfr one situation to another, as the
human reaction is not deterministic like a matheradtmodel. The open questions are:
first, if this variation is representative of thaarticular subject, and secondly, if it is
worth including a stochastic portion in the modektcount for this kind of variations.



The answer to those questions depends greatly @mpiplication intended for the
model.

PID anti-windup Model
Identifying a PID anti-windup model prompted goedults like those obtained with the
NLHW model as can be seen in Figure 7.

The identified gains were Kp =-2.331226, Ki=-1.838 and Kd=-1.471163.

30 Time Response Comparison

Real Data
O Pilot Model | |

Figure 7: PID anti windup model

When the model was applied to the validation datdssth the correlation and theé R
decreased to 0.1926 and near zero (Figure 8).maisindicate that linear PID models
do not cope with significant data variations, asleinitially it appears that NLHW
models are slightly more robust. It is interestiog/alidate this hypothesis in the future
with simulations. Table 2 compares the performarfdae two models.
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Figure 8: PID anti windup model identified applied to validation data.



Table 3. Models Comparison.

NLHW (Higher order) PID - Anti Windup

Compared with Compared with Compared with Compared with

Identification data  Validation data Identification data  Validation data

Correlation=0.9915 Correlation:0.8417f’ Correlation=0.9646Correlation=0.2764

R®-0.9829 R=0.3658 |  R’.0.9245 R°=0
Fit=86.91% Fit=20.37% | Fit=72.52% Fit=-(63,54)%

4. CONCLUSIONS

This paper has presented a brief rationale supypttie development of mathematical
representations of pilot behavior. It tested ddferrepresentations to obtain the models
abstracted from the pilot’s cognitive process tntdy inputs and outputs and using
system identification techniques to obtain the reatatical model.

The difficulties in pilot modeling are evident dteethe complexity of the brain, lack of
repeatability in behavior and the great number arfables that can affect the human
performance.

Within the modeling scenario, adaptability conceraping with dynamic and uncertain
conditions and feasibility refers to the models tobntion to an applied context.
Regarding feasibility, the VMCG testing applicatioas been shown to be a viable way
of using this kind of model in the development @mes: Adaptability appears to be more
difficult to reproduce as could be seen in the nagplication to different datasets.
Even though the two datasets used for estimatidnvahdation were obtained using the
same test pilot and the correlation metrics in@icme level of model adherence, the
identified models could be further improved, mosirpinently in the validation phase.
Moreover, it seems that the pilot did not behavethe same manner in different
occasions, what could explain the worse performancthe validation phase. This
raises the discussion regarding human intra-sulggability, which means the same
pilot exposed to the same situation may react mdiffity in different days, due to a
variety of reasons (physiological, psychologicaicial etc.). Hollnagel and Woods
(2005) have proposed four modes of interaction iepple to pilot and the cockpit,
namely, scrambled, tactical, opportunistic andtstia. Working with more data would
make it possible to fit the observed behavior ie oh these modes. Another relevant
question is if these variations are in the scopmtefrest in which the model is used. In
the proposed application, maybe this kind of acoyiia not needed to see if a regular
pilot would be able to perform that task. MaybeeotApplications may require that kind
of behavior.

This paper supports the Tustin’s hypothesis tha Klluman behavior can be
approximated by a PID and that apparently therisieed to stick strictly to the PID
structure, as became evident during the identiboadf the NLWH model, when raising



the order of the model did improve the fitting iésuTable 3 clearly shows that the
NLWH model is more robust to changes in the simotascenario than the PID model,
as it can be seen that all the validation metrexsebse considerably less in the NLWH
model when the model is tested against validatiata dspecially the correlation with

the value of 0.8417). This confirms in part tthe cognitive architecture abstraction is
important to identify inputs and outputs, but netessarily regarding the mathematical
representation and that system identificationvghle tool to obtain those models.

Further research

In the field of identification and model validatitimere are vast expansions to this initial
work, such as improving the experiment executiath iamestigating which variables do
impact on the model qualities and characteristitaaddition, validation of the model
with more simulations of different situations, witlifferent speeds, aircraft models,
pilots etc.

Using different mathematical representations i aldertile field of research. Neural
Networks are a potential candidate, but considetivag fairly good results could be
obtained with linear models, best linear approxioret (Castro-Garcia et all, 2015) in
addition to the nonlinear dynamic structures coblel a good tradeoff between
simplicity and performance.

Regarding future applications for such models ggiae to use this or similar models
for detection and identification of an event (ire thtudied scenario this is when the
engine failure causes the need for control inputthat a change in the design has
created a undesirable handling condition), as asltompensating/controlling based on
the model.
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