

Design decision and technology readiness assessment for aircraft electrical power systems

Petter Krus Linköping University Luciana Pereira Federal University of ABC

### Outline





#### Architecting Technological Systems



# **Technology and Requirement Space**

**Requirement Space** 

- How can we identify reuirements where viable products can be produced?
- Considering both market and available technology



#### What are the paths that guide designers?





The Concept Of Technology Criticality  $p = f_p(\mathbf{x}, \boldsymbol{\zeta})$  $c = f_c(\mathbf{x}, \boldsymbol{\zeta})$ 

- 1. Improvement in the technology,  $\varsigma$ . should have a strong effect on system performance, p
- The change on a design parameter, x, would have a low sensitivity on performance combining with a significant sensitivity on cost, c, from x.



The cost benefit factor 
 *κ<sub>i</sub>* of a design parameter is now defined as:

$$\kappa_{i} = \frac{k_{0,p,i}}{k_{0,c,i}} = \left(\frac{x_{i}}{p} \frac{\partial p}{\partial x_{i}}\right) \left(\frac{x_{i}}{c} \frac{\partial c}{\partial x_{i}}\right)^{-1} = \frac{c}{p} \left(\frac{\partial p}{\partial x_{i}}\right) \left(\frac{\partial c}{\partial x_{i}}\right)^{-1}$$

- I.e. Sensitivity of performance to design parameter, divided with sensitivity of cost to the same design parameter
- A working definition used for criticality of a technology is if the sum of all (n) :

$$\kappa = \sum_{i=1}^{n} \kappa_i < 1$$

- $\kappa$  is here called the **Criticality Factor**.
- If  $\kappa$  is larger than 2, we are in the *Technology Comfort Zone*



### Range Equation for Battery Powered Aircraft

 $R = \left(\frac{\eta c_b}{g}\right) \left(\frac{L}{D}\right) \frac{W_b}{W_0}$ 

 $c_b$ :Battery energy density (J/kg)(Battery specific energy J/kg or J/N=Nm/N=m200 Wh/kg state-of-the-art li-poly corresponds to 73000 m) $\eta$ :Propeller efficiency (range of 0.83-0.9)L/D :Lift over drag (range 7-22) $W_f/W_0$  :Fuel fraction, typically 0.2-0.5

# $R = \left(\frac{\eta c_b}{g}\right) \left(\frac{L}{D}\right) \frac{W_b}{W_0}$

*c<sub>b</sub>* :Battery energy density (J/kg)
(Battery specific energy J/kg or J/N=Nm/N=m
li-poly 73000 m)

Example

```
\eta :0.9
```

*L* / *D* :20

 $W_{f} / W_{0} : 1$ 

 $R = 0.9 \times 73000 \times 20 \times 1 = 1310 \times 10^3 \text{ m} = 1310 \text{ km}$ 

## **Technology Criticality in Battery Powered Aircraft**

Technology sensitivity

 $c_W = W_{pay} + W_s + W_b$ 

$$k_{0,\zeta} = \frac{c_{b,}}{R} \frac{\partial R}{\partial c_b} = \frac{c_b}{R} \frac{\partial}{\partial c_b} \left( \eta \frac{c_b}{g} \left( \frac{L}{D} \right) \frac{W_b}{W_b + W_{pay} + W_e} \right) = 1$$

Cost (assumed to be related to weight)

Range

$$R = \eta \frac{c_b}{g} \left(\frac{L}{D}\right) \frac{W_b}{W_b + W_{pay} + W_c}$$

Introduce as design parameter

$$\Psi = \frac{W_b}{W_{pay} + W_s} \qquad \qquad R = \eta \frac{c_b}{g} \left(\frac{L}{D}\right) \frac{\Psi}{1 + \Psi}$$



The criticality of battery technology for electric aircraft



Figure 1. Range as a function of non-dimensional battery weight.



# Conclusion

- 1. According to the Technology Comfort Zone, a larger range is not impossible to achieve, but the cost benefit becomes poor.
- 2. It would require that special emphasis has to be put on weight reduction and aerodynamic design, using more extreme electric technologies, and a very high portion of the aircraft weight would be taken up by the battery.
- 3. Staying within the Technology Comfort Zone means that readily available, mature, relatively inexpensive technologies off the shelf, can be used.
- 4. Although the range is independent of size, the endurance is not. A small aircraft will generally fly slower, and the endurance will thus increase simply because of the speed is lower.

#### Tak! Thanks! Obrigada!

CISB UFABC

CAPES

Contact: petter.krus@liu.se luciana.pereira@ufabc.edu.br

