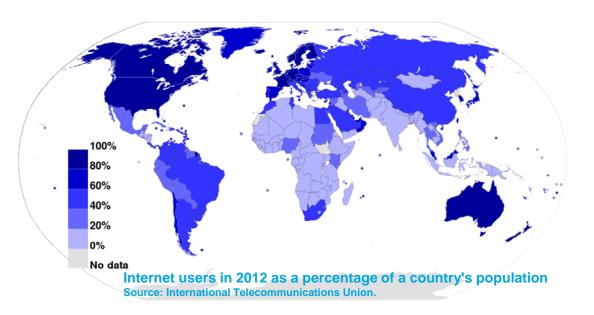
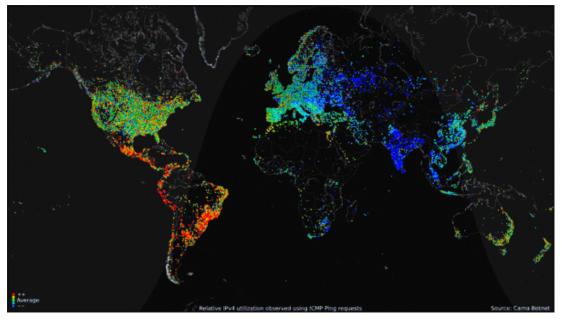

COTS Paving the Road for Global Internet Coverage


Per-Olof Lindqvist System Engineer, Product Unit Digital RUAG Space AB



Global internet coverage

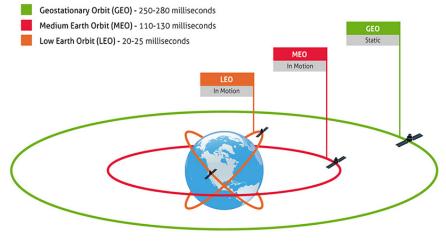
World map of 24-hour relative average utilization of IPv4 addresses observed using ICMP ping requests as part of the Internet Census of 2012 (Carna Botnet), June - October 2012.

Terrestrial networks vs Satellites

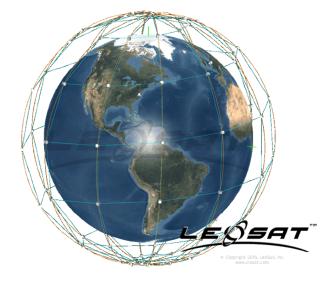
Terrestrial networks

- + Fixed and mobile solutions
- + Simple low-cost consumer electronics
- Cheap in densely populated areas like cities
- Expensive in remote areas and on the countryside

3 RUAG Space


Satellites

- + Global land coverage
- + Global sea coverage
- + Global airplane coverage
- + Relatively fast deployment
- Expensive electronics, launch cost, maintenance and operations
 - Advanced user terminals


GEO vs LEO for internet coverage

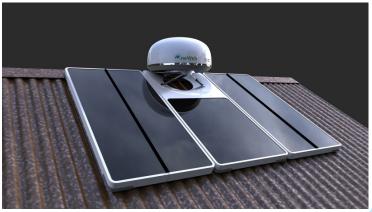
Geostationary internet satellites

- + Fixed position in the sky, fixed dish antenna
- + Few satellites provide global coverage
- High latency, >20 times a terrestrial network (240ms orbit delay)
- High accumulated radiation levels
- Advanced and expensive satellites
- Sensitive to outage

Note: Not drawn to scale

Low-earth-orbiting satellite

- + **Low latency**, same order of magnitude as long distance terrestrial networks (8 ms orbit delay)
- + Lower radiation levels
- + Redundancy on satellite level
- A moving target, tracking dish antenna with handover
- Many satellites needed to provide constant coverage
- Requires low cost satellite


Together ahead. **RUAG**

Can it be done with LEO?

Satellites

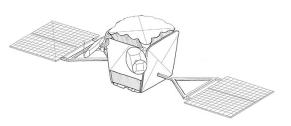
- Hundreds or even thousands satellites per constellation
- Life-time 5-7 years, replacement spares and launches
- Low-cost per spacecraft
- Mass production at least for space industry
- Low-cost launch
 - > Many satellites launched simultaneously during constellation build up
 - Cheap replacement launches

Courtesy OneWeb

User terminals

- Connect to satellite terminals (not to satellite)
 - Simple affordable consumer electronics
 - > Same as for terrestrial mobile networks
 - i.e. smartphones and computers

5 | RUAG Space |




```
Courtesy OneWeb
```

Satellite terminals

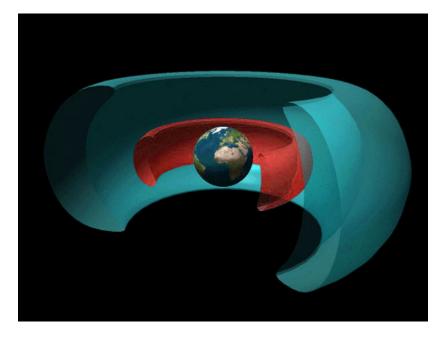
- Ground based routers connecting to satellite
 - Emit LTE, 3G, 4G and WiFi or even cable to the surrounding area
 - Still need to be small and low-cost

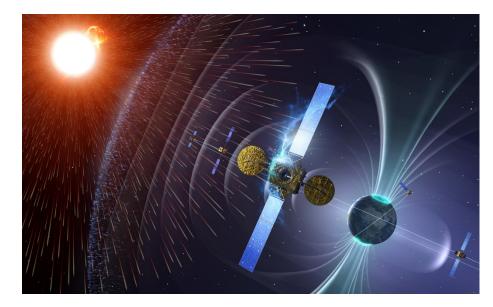
How can this be done?

What is driving cost in a megaconstellation?

- Spacecraft hardware (e.g. OneWeb >600 satalites)
- Launcher cost (e.g. OneWeb 21 launches with 32 satellites in each launch)

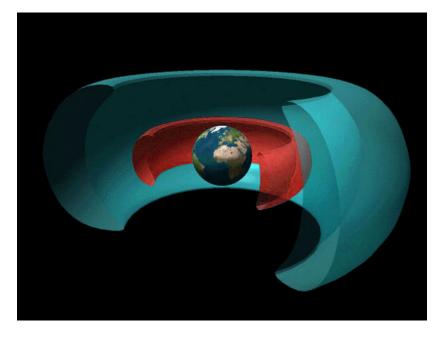
Spacecraft Hardware

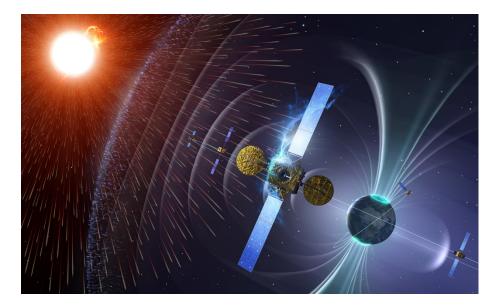

- Electronic Components cost is a main driver
 - Due to radiation tolerance
 - > Due to the approach to achieve quality
- Manufacturing and Test must be efficient



Radiation

Radiation effects electronics in different ways

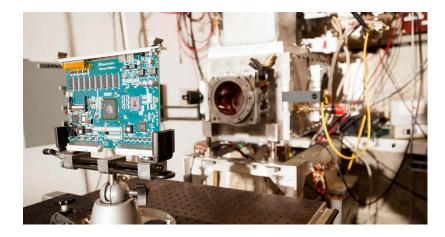

- Long term degradation – Particles are trapped in the Van Allan Belts due to the earth magnetic field


- LEO missions effected mainly by trapped protones in the inner belt
- GEO missions effeted mainly by trapped electron
- Consequences for electronics are alteration of electrical characteristics

Radiation

Radiation effects electronics in different ways

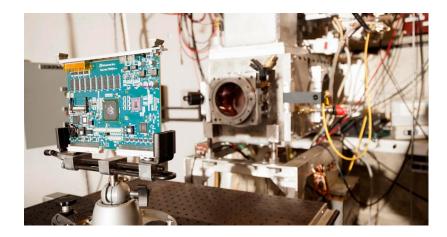
- Long term degradation – Particles are trapped in the Van Allan Belts due to the earth magnetic field


- LEO missions effected mainly by trapped protones in the inner belt
- GEO missions effeted mainly by trapped electron
- Consequences for electronics are alteration of electrical characteristics

- Single Event Effects –

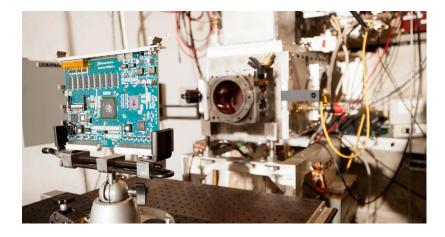
Heavy ions, protones and neutrones

- Cause memory elements to change state
- Cause glitches on analogue signals
- Caues current surge in the substrate (Latch-up)
 9|RUAG Space|


Traditionally, only parts with an established radiation heritage are used

Traditionally, only parts with an established radiation heritage are used

Traditionally, many parts are designed to be radiation tolerant.



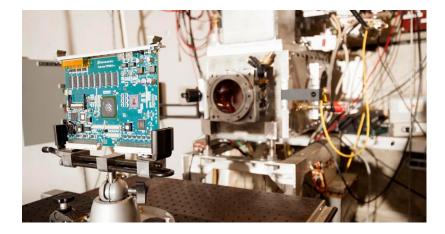
Traditionally, only parts with an established radiation heritage are used

Commercial parts can provide sufficient radiation tolerance

But this need to be explored, tested

Traditionally, many parts are designed to be radiation tolerant.

Traditionally, only parts with an established radiation heritage are used


Commercial parts can provide sufficient radiation tolerance

But this need to be explored, tested

Traditionally, many parts are designed to be radiation tolerant.

Commercial parts need to be used as is, with their behaviour

 Mitigations on component and/or system level will be needed

Traditionally, only parts with an established radiation heritage are used

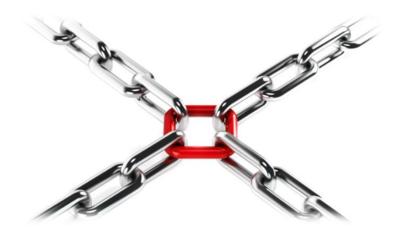
Commercial parts can provide sufficient radiation tolerance

But this need to be explored, tested

Traditionally, many parts are designed to be radiation tolerant.

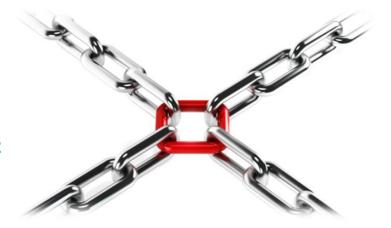

Commercial parts need to be used as is, with their behaviour

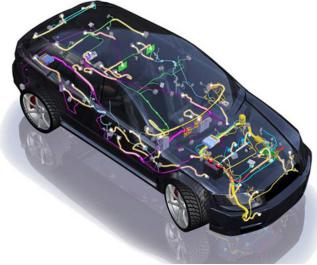
Mitigations on component and/or system level will be needed


Mitigation Techniques

- Additional shielding (metal around sensitive parts)
- > SEE Mitigation techniques, including:
 - TMR redundancy
 - software FDIR
 - Error correcting codes, EDACs
 - Supply current sensing and limiting
 - > Power cycling when needed

Space quality parts gain reliability by extensive testing of individuals and lots





Space quality parts gain reliability by extensive testing of individuals and lots

Commercial parts gain reliability by process control sample tests and by not touching the device to be used

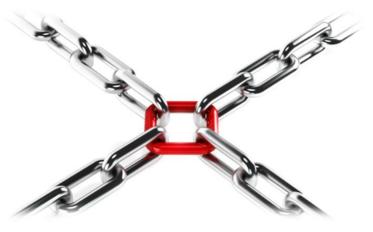
Space quality parts gain reliability by extensive testing of individuals and lots

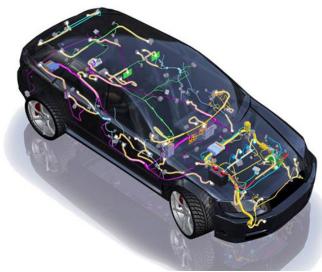
Commercial parts gain reliability by process control sample tests and by not touching the device to be used

Commercial parts have some gaps compared to space graded parts

- Lack of traceability
- Testing over full temperature range
- No screening for infant mortality (burn-in)
- Different die designs has the same part number
- Lack of change control due to limited communication with the foundry

n reliability by le tests and by not b be used


Space quality parts gain reliability by extensive testing of individuals and lots


Commercial parts gain reliability by process control sample tests and by not touching the device to be used

Commercial parts have some gaps compared to space graded parts

- Lack of traceability
- Testing over full temperature range
- No screening for infant mortality (burn-in)
- Different die designs has the same part number
- Lack of change control due to limited communication with the foundry

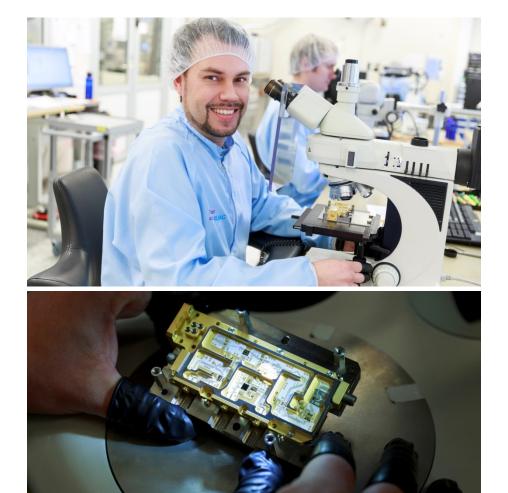
The gap can be partly filled by using automotive components.

Electronics production

Manufacturing

Multi Chip and Surface Mount Technologies A combined space/military production line

Currently producing:


-3100 boards/year

-2 board types/dag (batches)

P Test

Electrical & Physical Testing Environmental testing:


- Thermal Vacuum
- Vibration
- EMC
- **Process Development**
- **Component Technology**
- **Procurement**
- Analysis Laboratory
- Clean Room
 2.700 m2 class 100.000 (ISO Class 8)
 200 m2 class 10.000 (ISO Class 7)

High-rel vs COTS

Function	High-rel implementation	COTS implementation
Processor	Rad-hard LEON 2	Commercial PowerPC or ARM
Processing memory	Space graded SRAM or SDRAM	Commercial DDR2 RAM
Non-volatile memory	Space graded EEPROM and PROM	Commercial NAND FLASH
TM & TC	Rad-hard ASIC	Commercial FPGA
Reconfiguration	Rad-hard ASIC	Commercial FPGA
I/O controller	Rad-hard ASIC	Commercial FPGA, microcontrollers
Analogue and AOCS I/O	Rad-hard transistors, op-amps, comparators, PWMs	Commercial transistors, op-amps, comparators, PWMs
Power Supply	Rad-hard MOS-FETs, diodes	Commercial MOS-FETs, power modules
GPS function	Stand-alone equipment	Integrated, commercial FPGA, GNSS RF receiver and on-board SW
21 RUAG Space		Together ahead. RUA

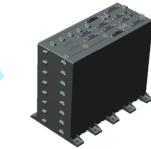
RUAG Space approach to mega constellation satellite electronics

- We have heritage:
 - >35 years of experience in high-reliable launcher and satellite electronics.
 - A design database with existing & qualified SW and FPGA IP-modules
 - an internal certified design process for high-reliable electronics
 - a high quality electronics production facility already today capable of producing space electronics and large series commercial electronics

RUAG Space approach to mega constellation satellite electronics

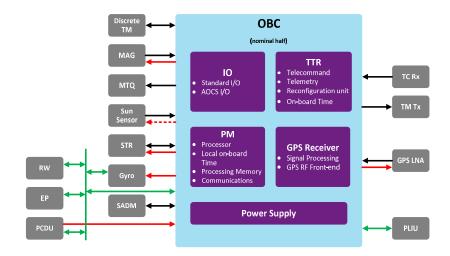
- We have heritage:
 - >35 years of experience in high-reliable launcher and satellite electronics.
 - A design database with existing & qualified SW and FPGA IP-modules
 - an internal certified design process for high-reliable electronics
 - a high quality electronics production facility already today capable of producing space electronics and large series commercial electronics
- Our approach is to be flexible:
 - reuse the existing design data-base and production facility
 - use a mix of high-rel components with up-screened COTS components.
 - Balance the mix and level of screening depending on project requirements.

Together


ahead. **RUAG**

RUAG Space approach to mega constellation satellite electronics

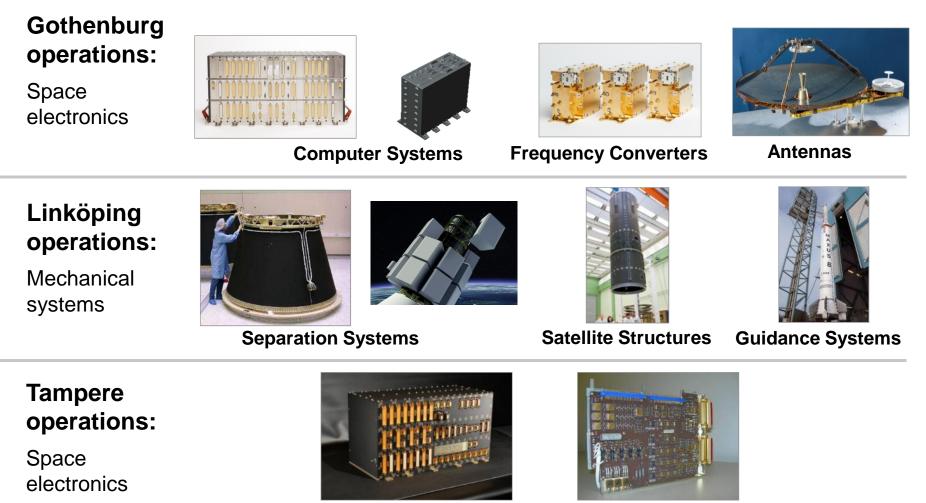
- We have heritage:
 - >35 years of experience in high-reliable launcher and satellite electronics.
 - A design database with existing & qualified SW and FPGA IP-modules
 - an internal certified design process for high-reliable electronics
 - a high quality electronics production facility already today capable of producing space electronics and large series commercial electronics
- Our approach is to be flexible:
 - reuse the existing design data-base and production facility
 - use a mix of high-rel components with up-screened COTS components.
 - Balance the mix and level of screening depending on project requirements.
- This enables us to offer something very different:
 - Reliable data handling COTS products
 - Significantly lower prices and higher performance than the corresponding traditional space qualified products


Together ahead. **RUAG**

Compact COTS OBC

Functions

- PowerPC processor
- Telecommand, Telemetry and OBT
- Software independent Reconfiguration unit
- Standard and AOCS I/O
- Integrated single frequency GPS receiver
- Secondary power distribution
- Platform and payload communication


Characteristics

- Physical dimensions:
- Mass:
- Power consumption:
- Processing performance:
- Memory resources:
- GPS position error:
- Discrete analog TM:
- Designed life-time:

240x100x200 mm 2.8 kg 22 W 1800 DMIPS 800 MFLOPS 512 MiB RAM 512 MiB RAM 512 MiB NVM <10 m RMS 3D 20 inputs 6 years LEO

Together ahead. **RUAG**

RUAG Space Sweden – Products

Interface Units

Power & Drive Electronics

Digital products

Command and Data Handling Systems

Digital Electronics has been delivered to more than 128 satellites in telecom, navigation, science and earth observation applications


Our most recent programs are: GAIA; Galileosat; GMES Sentinels 1, 2 & 3; Göktürk; EarthCare; ExoMars Orbiter & Rover; SmallGeo; Solar Orbiter; Iridium Next; EDRS-C; MeteoSat Third Generation and Euclid

Guidance and Control

More than 235 Ariane launchers, Vega launcher, ATV collision avoidance system

Payload Control and Instruments

For Inmarsat, MetOp, Galileosat, GMES Sentinel 4/UVN; Sentinel 5P/Tropomi; DCAMP Single Board Computer Radio occultation: GRAS and GRAS-2 Radar sub-systems: Envisat, GMES Sentinel 1

Acknowledgements

Slide 2, figure top right

By Jeff Ogden (W163) - Own work, based on figures from the Wikipedia:List of countries by number of Internet users article in the English Wikipedia, which is in turn based on figures from the International Telecommunications Union (ITU) for 2010 (updated to use figures for 2012 on 28 June 2013). The source code of this SVG is valid. This vector image was created with a text editor. This vector image includes elements that have been taken or adapted from this: BlankMap-World6.svg., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19202338

Slide 2, figure bottom left

By Author of Carna Botnet "Internet Census 2012", PGP public key - http://internetcensus2012.bitbucket.org/images/geovideo_lowres.gif , [1]Internet Census 2012: Port scanning /0 using insecure embedded devices, Carna Botnet, June - Oktober 2012, Public Domain, https://commons.wikimedia.org/w/index.php?curid=26114329

