FUTURE SENSOR COMBAT

Carina Marcus, Anders Höök 2016-10-11

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

THEME

• In the future, the risk of transmitting must be weighed against the benefits

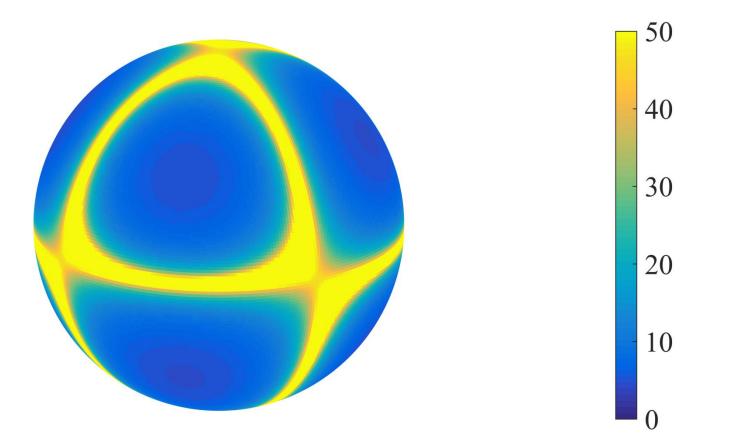
• How do we remain silent *and* gather information at low risk?

• Which technologies will support less obtrusive acquisition?

TRENDSPOTTING

- Today,
 - sensor functions are wired into hardware
 - a sensor function is executed by one aircraft
 - superiority associated with better sensor parameters
 - deterministic performance of sensors feeds the Air Picture data base
 - EW concerns mostly radars and seekers

- Tomorrow,
 - sensor functions independent of RF hardware
 - a sensor function may be realized by several aircraft
 - superiority associated with the *probability* that the recognized Air Picture > the adversary's Air Picture
 - opportunism and statistics will increasingly characterize the AP's completion
 - EW moves into the C2/COM domain


COMMUNICATIONS AND LINKS

- Radar usage restrictions => increased reliance on communications
 - For sharing and merging incomplete sets of air pictures.
- Broadcast COM systems
 - Simple, low cost => attracts integration
 - Well-proliferated in interoperable architectures => costly to change.
- Exploit this weakness!

COM ACQUISTION

- Intercept distance > the intra-communication distance
 - Difficult for enemy to jam listeners without deteriorating own link or revealing jammer
- Method:
 - Several aircraft record potential emissions.
 - At request, filtered recordings are stored, exchanged and matched.
 - Position and velocity of the emitter is estimated.
- The errors depend on
 - own formation
 - pos and time accuracy
 - the incident direction of the received signal.

COM ACQUISTION

The radial distance error as a function of incidence directions. Given are: the number of listening aircraft, their nominal positions, and errors in own position and time.

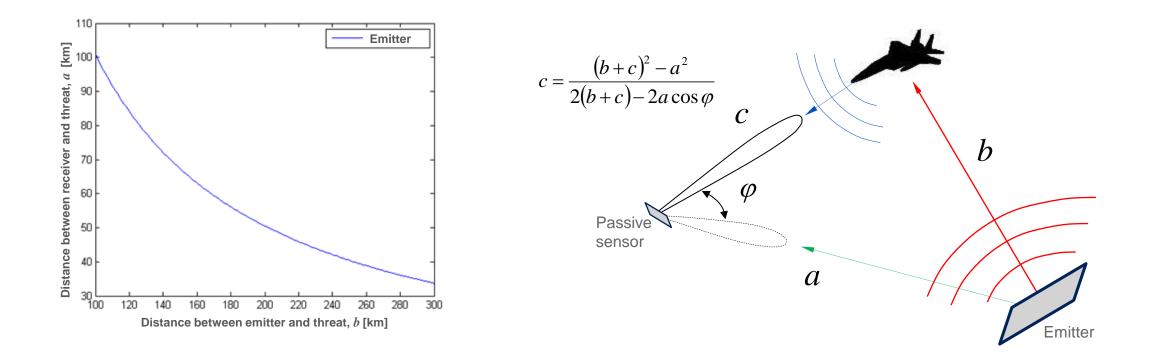
COM JAMMING

- Broadcast COM systems are susceptible to jamming
 - From all directions
 - Rigid protocols invite to jamming
- Jamming may be efficient at distances > the intra-communication distance
- Cognitive-radio responses to jamming should be expected in the future

DIRECTIVE LINKS

- We must prevent adversaries from
 - detecting
 - positioning
 - identifying
 - jamming
 - ... our own communications.
- First: today's standard methods should still be usable
- In addition: an RF link over a narrow beam with low sidelobes
 - The signal in other directions is suppressed by at least 20 dB.
 - Enough for preventing detection in most situations

DIRECTIVE LINKS


• Order-of-magnitude parameters of a Ku-band link

- Link haul distance
 10² km
- Array 10² elements
- Data rate
 air picture, a/c status, nav/pos, C2, ID
- Polarisation two, simultaneous superposition
- No of digital channels TBD
- Directive link requirements close to ESM/ECM req's
 - Supplier shifts expected
- Electronics components mature by 2020
- ITAR issues likely to emerge, own design capability needed

PASSIVE RADAR

- Safe for forward deployed aircraft
- Made viable with modern AESA technology
- 1. AEW-band transmitter
 - Receiver candidate a: Medium-sized platform with downscaled AEW antenna
 - Receiver candidate b: Fighter with AEW-band capability on receive
- 2. ISR-band transmitter
 - Receiver candidate a: Medium-sized platform with X-band antenna
 - Receiver candidate b: Fighter radar

PASSIVE RADAR

- Useful when the Air Picture is depleted
- But not a disruptive game changer
 - Latencies, range, accuracy....

IDENTIFICATION

- IFF emissions simple to detect
 - Wide or omni lobes, not LPI
- Add new method
 - Narrow interrogation lobe => higher frequencies
 - Determine incidence, respond in narrow lobe
 - Use power adaptation, spread-spectrum and other LPI techniques

- Holy grail: adversaries don't notice being interrogated
- Drawback: neutral a/c cannot respond

PNT Position, Navigation, Time

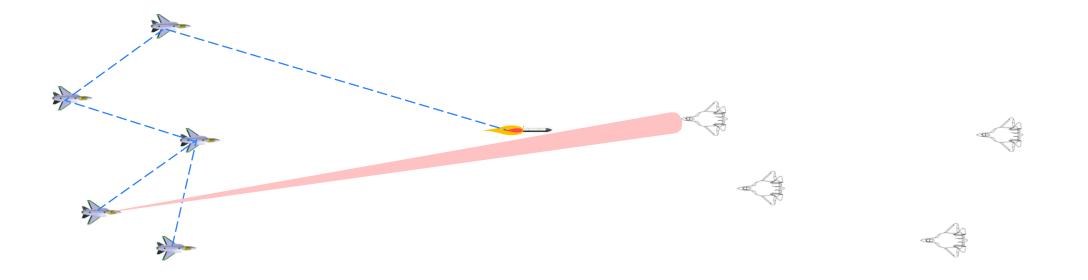
- Critical issue for all sensor functions
- SATNAV has some 15 ns, 20 m accuracy
 - Accurate enough for long-range engagement
- But SATNAV can not be relied upon in a conflict
 - Not even asymmetric
- Rapid development of jammer concepts
 - But too slow for air-to-air scenarios
- Air-launched decoys more suitable
 - Small payload, power available
 - Cheap, carried in numbers
 - Enter scene when needed, M > 0.8

PNT Accuracy

- Std quartz clocks:
 - $-10^{-8} \Rightarrow 360 \ \mu s$ after 1 hour mission
 - Far too inaccurate for COM acquisition
- Timing need:
 - Clock stability of $5.10^{-11} \le 200$ ns error after 1 hour
 - Note: depends on sensor formation and weapons properties
- Position need:
 - Std: 1.8 km after 1 hour mission
 - Relative error should be reduced to < 100 m
 - Again: formation and weapons dependent

MISSILE DATA LINKS

- Main reasons for side-looking radars (SLR)
 - SAR/GMTI
 - Missile data link support during evasion
- F-22
 - SLR postponed to "beyond Increment 3.2" ...
- T-50
 - SLR AESA presented, hatch exists
- But:
 - Efficient (= 180°) evasion not supported by side-looking AESA
 - kill ratio increases if link is maintained during evasion
- Conclusions:
 - Backwards-looking radar needed, or
 - Link handover


MISSILE DATA LINKS

- Backwards looking link/radar?
 - Spine-tails candidate location, but
 - LR target tracking difficult
 - Competition: RWR, COM array, chute, APU, tailhook
 - Associated with two-engine aircraft

- Hand-over?
 - Requires planning
 - Link, target tracking or both? To one or two? Recursive hand-over?
 - Sensitive
 - Launch inhibited if the other a/c is not in place
 - The other a/c might have to evade, too.
 - Rigid, not robust

MISSILE DATA LINKS

- Hand-over to the network?
 - Missile is given the air picture + target designation
 - All aircraft contribute: to air picture & as contact node candidates
 - In line with unmanned companion development

FIGHTER RADAR

- The front-end is entirely devoted to radar
- Result:
 - Other functions bereft of aperture area in the front sector
 - Front-end occupied by an increasingly silent, multi-M\$ antenna
- The front-end aperture must support other functions
 - ESM, ECM, jamming, COM, links, passive radar
- Balanced approach
 - Extend the requirement specification, include some functions
 - Remaining functions easier to integrate

RFARCHITECTURE

- Functional transparency
 - RF hardware
 - Common avionics computer platform
- Low-level service layers, for all sensor functions
- Management Process handles sensor execution requests from, *e.g.:*
 - Air Picture Completion, Threat Assessment processes
 - Network Connectivity Upholding process
- Patch where needed
 - ECCM, DRFM require fast responses, etc
- Supports functional growth and customer adaptation
- Emulates standard/legacy sensor functions