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INTRODUCTION 

On the early 2000's, avionics systems started to be employed as integrated software 

modules embedded in a same hardware, as an evolution of previous concept of having a 

same base hardware with several hardware cards, each one performing a dedicated task. 

This concept, defined as Integrated Modular Avionics (IMA), was standardized in 

(RTCA 2005) and brought a consistent improvement on avionics system design.  

IMA systems rely mostly on Commercial Off-The-Shelf (COTS) hardware, leaving 

most of dedicated and customized tasks to be performed by software and programmable 

hardware applications. During the recent years, the IMA concept had broad acceptance 

on the market, especially in civil avionics area. The foundations of IMA design rely on 

the determinism of the combination of each application and the hardware over which it 

is running. Depending on the criticality of the function being implemented by an IMA 

embedded software application, it is mandatory to know the expected behavior of such 

implementation in such a way that this application will not interfere on other ones 

running over the same processor and sharing the same hardware resources (Lofwenmark 

et al. 2014). 

The best way to assure this independence and non-interference among applications 

running over the same hardware is assuring the temporal and spatial separation among 

them (Weilong et al. 2014). Spatial separation means to assure that each application has 

its own memory area and this area will not be used by any other application except the 

one intended to use. Temporal isolation means that a given application will seize the 

hardware resources to execute only during a given pre-established amount of time and 
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this amount will not be exceeded in order to do not jeopardize the execution of other 

applications that will run using the same hardware resources. 

Spatial separation is a goal that does not present big challenges to be achieved, since 

real-time operating systems (RTOS) compliant with ARINC653 standard (ARINC 

2006) offer a robust tool set to assure the isolation of memory areas between 

applications. However, temporal separation is a much more delicate issue to be dealt 

with. This happens because in hard real-time applications each task has hard deadlines 

to meet and the real-time operating system shall manage the scheduler in order to avoid 

any unexpected and not deterministic behaviors. In order to assure such real time 

performance the OS needs to know what is the effort, in terms of time consumption, that 

each software application takes. Such metric, is named as Worst Case Execution Time 

(WCET). 

In the other hand, although the introduction of multi-core processors integrated in a 

single chip (MPSoC) brought many improvements in scalability and power efficiency to 

computer systems, it also posed some challenges compared to single core processors, 

like the way to perform execution time calculation (Luque et al. 2012) or even 

proposing new metrics for system performance analysis (Otoom et al. 2015). 

This paper aims to discuss and to analyze alternatives to improve the WCET analysis in 

order to cope with hardware technology evolution towards the usage of multi-core 

processors in avionics systems. In this context, shared resources, tasks parallelism, 

memory access latencies and inter-core communication, which are aspects that also 

increase the analysis difficulty, will be highlighted. 

BACKGROUND AND RELATED WORKS 

WCET Analysis in Multicore Platforms 

WCET analysis basically consists in finding a safe upper bound on the execution time 

which satisfies the system time constraints. Most of the WCET estimation techniques 

involve static analysis of the code or measurements and hybrid analysis (Mitra et.al 

2007), (Mushtaq et al. 2013). First techniques were based in pure execution 

measurements that usually reach a rough estimation, leading to a loss of performance. 

With the technology advance, this kind of estimations (usually too pessimistic) were put 

aside and new studies start to be develop to reduce the gap between estimation and 

actual results. 

WCET is a fundamental metric for the development and validation process of safety-

critical systems. In avionics industry, which requires high reliability, safety and 

performance, the DO-178B/C is responsible to guide and audit the software 

development process, including software reviews and analysis, where WCET plays a 

major role. 
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WCET calculation is highly dependent of hardware architecture and resources of the 

system. Nowadays, WCET analysis has achieved a high level precision in the 

calculation of sequential programs executing on single-core processors (Wilhelm et al. 

2013). There are available consolidated COTS software tools, widely used, to provide 

WCET analysis. These analyses rely heavily in the time determinism of the software 

execution flow, based on the assumption that only a single processing entity (either a 

process or a thread) will execute in a given moment. 

However, with the introduction of multi-core systems, this assumption is not valid 

anymore. Although a processing entity can seize in an exclusive way a core in a given 

moment, the several cores embedded into a MPSoC (Multi-processor System-on-a-

Chip) share other processor internal resources as caches, memories and intra- processor 

communication buses. The usage of such shared resources in a same moment 

invalidates the previously accepted assumption and poses a new challenge to estimate 

an accurate WCET for hard real-time software applications (Nowotsch et al. 2014).  

Several efforts were made in order to overcome this constraint. However most of them 

bring significant draw-backs (Nowotsch et al. 2014) as depicted in Table 1. 

Table 1. Drawbacks of possible WCET approaches for multicore processors 

Approach Drawback 

Shared resources 

serialization through 

TDMA schemes 

Inefficient resource utilization due to resource 

privatization 

Customizations in 

processor hardware 

architecture 

Preventing the usage of COTS processors 

Shared Resources Joint 

Analysis 

Hard scalability when using multiple cores and 

difficult usage of incremental development and 

certification 

Response Time Analysis 

and resource conflicts 

delays 

Does not consider static scheduling and difficult usage 

of incremental development and certification 

Monitoring Mechanisms 

using processor counters 

Only monitor the impact of non-real time tasks while 

does not guarantee achievement of hard real time tasks 

deadlines. 
 

 

Avionics Certification 

Most safety-critical embedded software development needs to comply with guidelines 

and standards in order to produce artifacts with a minimal level of quality, safety and 

maturity (Lofwenmark et al. 2014).  
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Since early nineties it is mandatory for avionics that embedded systems need to comply 

with standards created to be used as a guide to determine if the software will perform 

reliably in an airborne environment.  

The main standard followed by industry for avionics software systems development is 

DO-178B - Software Considerations in Airborne Systems and Equipment Certification 

(RTCA 1992), developed by the safety-critical working group RTCA SC-167 of RTCA 

and WG-12 of EUROCAE. This standard is a guideline dealing with the safety of 

safety-critical software used in certain airborne systems. The European agencies refer to 

this document as ED-12B, as registered by EUROCAE. 

During its system specification phase, every avionics software needs to be categorized 

according with a Design Assurance Level (DAL). The DAL is determined based on a 

safety assessment process and hazard analysis. A hazard is defined (FAA 2012) as a 

condition that could foreseeably cause or contribute to an accident, an unplanned event 

or series of events that results in death, injury, or damages to, or loss of, equipment or 

property. 

A failure hazard assessment (FHA) is performed in order to verify the consequences of 

a failure condition in the system. The failures conditions categorization considers 

basically their effects on the aircraft, crew, and passengers as depicted in table below 

defined in (RTCA 1992). 

Based on the definitions of Table 2, safety analysis tasks are accomplished in order to 

determine the software DAL and are required to be documented in system safety 

assessments (SSA). The relationship between function failure effects, DAL's and failure 

rate are represented in Table 3. 

Table 2. Failure types and consequences 

Failure Type Failure Consequences 

Catastrophic  Failure may cause a crash. Error or loss of critical function required 

to safely fly and land aircraft. 

Hazardous  Failure has a large negative impact on safety or performance, or 

reduces the ability of the crew to operate the aircraft due to physical 

distress or a higher workload, or causes serious or fatal injuries 

among the passengers. (Safety-significant) 

Major  Failure is significant, but has a lesser impact than a Hazardous 

failure (for example, leads to passenger discomfort rather than 

injuries) or significantly increases crew workload (safety related) 

Minor  Failure is noticeable, but has a lesser impact than a Major failure 

(for example, causing passenger inconvenience or a routine flight 

plan change) 

No Effect Failure has no impact on safety, aircraft operation, or crew 

workload. 
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Table 3. Design Assurance Levels per failure types 

Failure Condition DAL Maximum Failure Rate per Flight Hour 

Catastrophic A 1.0E-9 

Hazardous B 1.0E-7 

Major C 1.0E-5 

Minor D 1.0E-3 

No Effect E -- 
 

 

Furthermore, after specific safety analysis (modulated), the hazard could be mitigated 

by system architecture aiming to decrease the DAL level, since development and 

certification costs greatly increase as the software criticality level is higher (Pop et al. 

2013). 

DO-178B (RTCA 1992) allows flexibility regard different styles of software life cycles, 

and because of that, generally, is difficult to implement the first time. The flexibility 

raises several abstract aspects that depends of how is choose to deal, could increase the 

complexity, effort and cost. Independent of the aspects, all process must have defined 

and documented the exit/entry criteria between development phases. 

In order to comply with DO-178, the avionic software must follow the development 

phases described in the standard. Depends of the software DAL, the phase is not 

required. Each phase generates a certification artifact. Figure 1 illustrates the trace 

between certification artifacts required by DO-178B/ED-12B.  

In 2012, motivated by the 

advances in hardware and 

software technology and as 

an insistent request by the 

industrial partners, was 

published the new 

airworthiness standard, DO-

178C/ED-12C (RTCA 

2012). Its content is based 

on the previous standard, 

but addressing software 

development methodologies 

and issues which were not 

adequately addressed in 

DO-178B/ED-12B.  

Focusing in the subject of 

this paper, the WCET 

analysis was one of the 

relevant topics discussed during the meetings to improve the standard. In DO-178B 

 
Figure 1: Relationship between DO-178B Certification Artifacts 
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(RTCA 1992), the WCET analysis was identified as part of reviews and analysis of the 

source code verification process (section 6.3.4.f - “accuracy and consistency”). Such 

approach satisfied the goal in the past, when the main programing language was 

assembly. Today it is impossible to perform this analysis only reviewing the source 

code, without consider the time constrains, system architecture, memory accessing. 

After many discussions regarding this topic, a sentence was added in section 6.3.4.f, 

requiring that compiler, linker and hardware be assessed for impact on WCET. Also in 

the introduction to the section on software reviews and analysis (section 6.3), it was 

remarked that reviews and analysis alone may not completely satisfy some objectives 

(e.g. WCET, stack analysis) and to achieve that, some tests may be also necessary. 

Related Works 

Since multicore processors are available since more than a decade, several different 

approaches already have been discussed on how to take advantage from the increased 

performance and power efficiency provided by such processor architectures, while still 

coping with hard real-time requirements.  

(Betti et al. 2008) proposed a modified Linux kernel for hard real-time embedded 

systems. Although this solution succeeds to meet the proposed application deadlines, it 

relies on resource privatization, what is not a desirable feature since it leads to an 

inefficient resource utilization as discussed earlier in this section. 

(Bastoni et al. 2010) brought concerns from another perspective: scheduler policies for 

hard and soft real-time applications especially for large multi-core processors, 

proposing that it may be a good approach to group cores in clusters internally. 

Additionally, it brings an interesting early concern about execution overhead and the 

impact of shared resources usage between cores that may impact schedulability and 

performance of hard real-time applications. 

(Luque et al. 2012) discusses a key factor that affects directly the way to design hard 

real-time embedded systems, especially avionics. The new approach on how to account 

CPU time in multicore processors is directly related with WCET calculation, that is a 

fundamental metric for avionics verification and validation, especially regarding 

applications that are intended to be ported from legacy single-core platforms to 

multicore platforms. 

Intra-processor shared resources pose a challenge to multicore performance for hard 

real-time embedded applications. (Nowotsch et al. 2014) discussed and proposed a new 

method of calculating WCET considering the shared resources inside an MPSoC, 

naming it interface-sensitive WCET (isWCET). Indeed, the interface between multiple 

cores through the shared resources is found to be a major player in WCET calculations 

for multicore processors and will be the main focus of this paper analysis. 
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Besides the actual shared resources that may develop into a bottleneck for the 

concurrent execution of hard real-time processes, multi-core processors also bring a 

challenge regarding Execution Overhead time, since a considerable amount of inter-core 

communications and protocols need to be conducted inside the processor, and the time 

spent for these communications is added on top of the actual process execution time 

(Saranya et al. 2014). 

METHODS 

Since the availability of open-source and academic WCET calculation tools for multi-

core platforms is still restricted, in order to assess the impact of different types and 

amounts of shared resources, it was used a processor simulator tool. CHRONOS 

(Xianfeng et al. 2007) is a static analysis tool that generates WCET estimations based 

on SimpleScalar simulator architecture, a widely popular cycle-accurate architectural 

simulator that allows the user to model a variety of processor platforms in software 

(Burger et al. 1997). This allows the processor architecture to be tailored via input 

parameters like timing models of different micro-architectural features present in 

modern processors. In particular, it models in-order and out-of-order pipelines, 

instruction caches, dynamic branch prediction and their interactions, in such a way that 

the tool is able to define time bounds for each basic block execution under certain 

execution contexts. Hence, CHRONOS allows simulating the impact of changing each 

of these features over the WCET of known embedded software.  

CHRONOS uses a series of step that go from C source file compiled with a dedicated 

GCC in order to build the program control flow graph and detect flow and user 

constraints. Afterwards, based on the configured processor model, the micro-

architectural model is built (at this point this paper will focus the experiments described 

in the next section). Next, through Integer Linear Programming solver, the estimated 

WCET is calculated, however considering the micro-architectural modeling. Finally, an 

observed WCET can also be calculated using SimpleScalar toolset. The observed 

WCET is guaranteed to be lower than estimated WCET (Xianfeng et al. 2007). The 

summarized process is depicted in the flowchart below (Xianfeng et al. 2007). 
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Using a set of 

benchmark 

applications that are 

distributed with the 

tool, the relevant 

parameters linked with 

intra-processor shared 

resources were 

modified and the 

impact of each one of 

them over WCET was 

assessed. Shared 

caches and buses are 

potential important 

players in this analysis 

(Chattopadhyay et al. 

2010) and were 

considered in the 

experiments described 

later in this work. 

 

RESULTS AND DISCUSSION 

In order to demonstrate the impact of architectural resources in the WCET calculation, 

this paper prepared an analysis focusing on executing WCET benchmarks in different 

processor model. Using a standardized set of benchmarks provided by Chronos 

distribution, processor configuration scenarios were created combining the task 

allocation, different L2 cache sizes and cache architectures to demonstrate the influence 

of those parameters on execution time.  

Experiments 

The cache analysis was divided in two experiments according to the architecture of L2 

cache: private or shared. In architectures in which the L2 cache is private, each core 

accesses an exclusive cache, without interference of other cores. Opposing that case, 

shared architectures allow sharing of L2 cache between two or more cores. 

The experiments were designed using processor architecture with two cores, fixed size 

of L1 cache and analyzed using the same set of scenarios for both experiments. Figure 3 

illustrates the experiments design. 

 
Figure 2: Chronos computation analysis flowchart 



WCET Estimation on Multicore Processors for Avionics Applications 
Aerospace Technology Congress 

11-12 October 2016, Solna, Stockholm 
 
 

As mentioned above, several scenarios were developed 

to stress the benchmarks, varying the modelling of 

processor. It is made changing parameters used as input 

for Chronos Tool during the microarchitecture modeling 

phase. In the next paragraphs, there is a description of 

the purpose of each benchmark and what is the similarity 

and differences among the processor configurations.  

Processor Configuration Scenarios 

As described in the previous section, the Chronos Tool 

Analyzer allows the processor’s modelling varying 

parameters in the context of single or multicore 

microarchitecture simulation. In this paper all scenarios 

were developed using 2 cores, with one benchmark 

running in each core. Since the focus of the paper is the cache memory analysis, all 

parameters related with internal processing and buses were maintained the same for all 

scenarios, in order to avoid interference of other components of the process.  

In the experiments, it was decided to fix some parameters, like L1 cache size. The size 

chosen to L1 cache was 128 bytes, since increasing its value would lead to an impaired  

stress of L2 cache resource. 

Therefore, the most significant modification in the processor modelling was the size of 

L2 cache. The scenarios were created increasing the size in a range from 512 Bytes to 

64 Kbytes. Additionally, the set of tests were duplicated changing the cache architecture 

between private and shared. Thus, the scenarios summarized in the Table 4, were 

developed for both experiments. 

Table 4. Processor configuration scenarios 

Scenario L1 Size L2 Size 

1 128 B 512 B 

2 128 B 1 KB 

3 128 B 2 KB 

4 128 B 4 KB 

5 128 B 8 KB 

6 128 B 16 KB 

7 128 B 32 KB 

8 128 B 64 KB 
 

 

Benchmarks 

Each experiment analysis was made grouping the benchmarks in pairs, one in each core, 

and executed using Chronos Analyzer for each configuration processor scenario. This 

allocation can be observed in the Figure 4. 

L2 CACHE

PROCESSOR PROCESSOR

L1 CACHEL1 CACHE

CORE 1CORE 0

L2 CACHE

PROCESSOR PROCESSOR

L1 CACHEL1 CACHE

CORE 1CORE 0

L2 CACHE

PRIVATE CACHE

SHARED CACHE

 
Figure 3: L2 cache architecture 



WCET Estimation on Multicore Processors for Avionics Applications 
Aerospace Technology Congress 

11-12 October 2016, Solna, Stockholm 
 
 

The benchmarks were developed following 

particular restrictions to simplify the static 

analysis and make possible the WCET 

calculation. All implementations are 

completely structured (no unconditional 

jumps, exit from loops), with no ‘switch’ 

and ‘do/while’ statements. Additionally, 

operators like ‘and/or’ for multiple 

expressions are not used, as well as no 

library calls.  

Furthermore, the benchmarks listed in Table 

5 were selected because they present a heavy memory allocation, since all of them 

perform operations involving vector, arrays and calculations over these elements. 

Table 5. Benchmarks 

Benchmarks Meaning Description 

edn Vector Multiplication Compilation of several cases which 
implements vector multiplications and 
array handling. 

jfdcint JPEG slow-but-accurate integer 
implementation of the forward 
Discrete Cosine Transform 

Long calculation sequences (i.e., long 
basic blocks), single-nested loops. 

adpcm Adaptive Differential Pulse Code 
Modulation algorithm 

16Khz sample rate data is used as input 
data and after calculation the result 
and compressed array are generated. 

ndes  Complex embedded code. A lot of bit manipulation, shifts, array 
and matrix calculations. 

 

 

 

Results and Discussion 

The results analysis presented below, in form of graphs, summarizes all WCET 

measurements extracted from the experiments execution. The graphs represent the 

comparison between the benchmark execution using private and shared L2 cache 

architecture.  

There is more information that could be extracted from the graphs, like what is the best 

WCET of a given benchmark in such scenario. Another possible information that can be 

extract is how much L2 memory is necessary to achieve the best WCET. All those 

points will be analyzed in the next paragraphs. 

As a result of the experiments addressed by the bench-marks described in Table 5, and 

executing all scenarios of Table 4, the graphs on Figures 5 – 8 were obtained. Solid 

adpcm jfdcint

edn ndes

CORE 0 CORE 1

CORE 0 CORE 1

adpcm jfdcint

edn ndes

CORE 0 CORE 1

CORE 0 CORE 1

SCENARIO 
2

128 B - L1
1 KB - L2

SCENARIO 
1

128 B - L1
512 B - L2

 
Figure 4: Processor Configuration Scenarios 
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lines in the graphs represent private L2 caches while dashed lines represent shared L2 

cache. 

 
Figure 5: ndes benchmark comparison 

 
Figure 6: edn benchmark comparison 

 
Figure 7: jfdcint benchmark comparison 

 
Figure 8: adpcm benchmark comparison 

Analyzing the presented WCET graphs, it is possible to verify that if the modeled 

processor does not have enough L2 cache to allocate all necessary memory for the 

benchmark under execution, the WCET presents a number larger than its best 

estimation. The estimated WCET decreased when the L2 cache increases its size, 

approaching its best estimation. This can be observed by the difference between the 

solid and dashed lines of the Figures 5 – 8. 

Despite the similar behavior presented by the four tested benchmarks, it is possible to 

observe in the figures that due to particularities of the computation performed by each 

one of them, the approximation to the private L2 cache results present different shapes. 

In Figure 5 and Figure 6 it is possible to observe sharper drops, while in Figure 7 and 

Figure 8 the drops are softened. This is due to the implementation and purpose of each 

benchmark. The sharper drops are consequence of a large amount of memory used by 

both benchmarks. It increases the number of cache miss when the size of L2 cache is 

not enough to store the necessary data. By the other side, in Figure 7 and Figure 8, the 

drops are softened because the benchmarks are implemented focusing in performance. 

Several calculations and operations are performed under the data allocated in the 
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memory, resulting in a special behavior in the graphs. The solid and dashed curves are 

always following each other, evidencing for those cases that the bottleneck is not the 

cache size but the computation power.          

Additionally, all benchmarks WCET were larger when L2 cache is shared. A major 

consequence of this finding is that in order to achieve the best WCET estimation it 

would be necessary to increase L2 cache memory size. However, since COTS 

processors have already pre-defined cache sizes, probably this WCET best estimation 

number will not be reached. In this experiment, all benchmarks reach the best 

estimation, either in private or shared cache, only when L2 cache was significantly 

increased. This was more remarkable in the results shown in Figure 5, in which the 

results of the shared L2 cache achieved the same results as the private ones only when 

the 16 KB size was reached. 

CONCLUSIONS 

The experiments using a simulated dual core processor modeled on CHRONOS tool 

with shared and private L2 cache, running pre-defined standardized benchmarks showed 

that indeed, shared resources between cores pose a significant impact over WCET 

analysis. This analysis was described in the related works (Nowotsch et al. 2014). The 

consequence of that is the impact in system determinism, bringing major challenges on 

avionics certification for multicore systems. 

WCET estimation for multicore platforms is still an open topic for avionics industry 

(Lofwenmark et al. 2014). However, given that the usage of multicore processors is a 

point of no return, the problem still needs to be tackled. The contribution of this paper 

towards this goal is to demonstrate the influence of L2 cache architecture in the WCET 

estimation, highlighting the difficult to achieve the best WCET when the resource is 

shared. The experimental results evidenced that increasing the L2 cache size allows to 

reach better WCETs in tasks where there is a heavy memory access, increasing system 

performance, especially in tasks with vector and matrix manipulations. 

As future work it is possible to wide up the analysis on simulated environment 

considering processors with more than 2 cores and also using more complex software as 

input, thus verifying the impact of other shared resources. As a step ahead on the same 

subject, it is intended to perform resources monitoring and WCET calculation on actual 

real multicore hardware, aiming to minimize the impact of shared resources verified on 

simulations performed previously. 
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