Model-based Design and Analysis of Cyber Physical Systems

Jalil Boudjadar, Simin Nadjm-Tehrani, Ingemar Söderquist
Outline

- Work context: NFFP6 project
- Modeling and analysis using Uppaal
- Modeling and analysis using AADL
- Intuitions for future avionic systems
- Conclusion
Work Context: NFFP6 Project

• Separation of platform and application descriptions.
• Model both elements at an early conceptual stage:
 – analysis is tractable;
 – design inconsistencies are discovered early.
• Scalable and formal analysis of performance and feasibility
• Exploit the analysis results of current platforms for future platforms.
Work Context: NFFP6 Project

- Use of model-based design to study design trade-offs.
- Investigation of methods and tools for high level description and automated analysis.
- Model different platform architectures: today’s federated, forthcoming multicore, any emerging future platform.
Current work

• Formal tool-supported design and analysis
 • Study the modularity and scalability of Uppaal for application deployment on a single node multicore platform.

• Model-based design using AADL
 • Understanding the benefits and limitations of the AADL descriptions and supporting tools for multi-node networked platforms.

• Provide methods to estimate shared resource access patterns and analyze utilization in a multicore setting.
Model-based design and Analysis of Avionic Systems using Uppaal
Uppaal Toolsuite

- Automata-based modular description.
- Simulation and formal verification.
- Reconfiguration and flexibility.
Model-based design and Analysis using Uppaal

- Multicore platforms with a hierarchy of memories (local caches, shared L2 cache and DRAM).
- Local scheduling at each core level.
- Application described by a set of periodic processes.
- Each process has parameters:
 - Worst case execution time (WCET)
 - Worst case resource access (WCRA).
- Outcome: Schedulability, core utilization and maximum interference per access to shared memories.
Reusable and reconfigurable frameworks

- Modular design.
- Statistical model checking for performance estimation.
- Case study size: Currently 30 tasks running on 8 cores.
Model-based design and Analysis of Avionic Systems using AADL
Model-based design using AADL

- AADL (Architecture Analysis & Design Language) is a modeling language to describe architectures and applications.
- Concepts to describe the computing and communication elements, and the software applications.
 - Independently!
- Flexible mapping of the application elements to the hardware.
AADL for Multi-processor Platform description

• Alternative design models as a proof of flexibility
 – Each CPM has a single core.
 – Each CPM is a multicore processor.
 – An imaginary future platform.
• Analysis of schedulability and performance using AADL Inspector tool.
• Study the scalability.
Multi-CPM single core platform

- PPM includes 2 CPMS and a network.
- Each CPM schedules 2 partitions using ARINC653.
 - major frame, criticality, partition slots
- AAM includes 4 SW applications, each consists of 2 threads.
- Threads are scheduled using a local scheduler (alternative algorithms).
- Bandwidth and latency constraints for network and individual connections.
AADL analysis tool: Inspector

- Execution simulation
- Schedulability analysis
- Processor utilization and response time analysis
Multi-CPM multicore networked platform

- Alternative design models as a proof of flexibility
 - Each CPM has a single core.
 - Each CPM is a multicore processor.
 - An imaginary future platform.
- Reuse the experience from the Uppaal study and add network characterization in AADL
Imaginary Future Avionic Platforms
Rough sketch of approach

• Goal: will the design decisions taken earlier for the original platform be suitable for the new platform?
 • Describe the future platform to some extent and reuse the application model in analysis.
 • Or, analyze the application using a current platform, relate the future platform to the current platforms and reuse the analysis process.
Summary

• Two different model-based tools to describe avionic systems.
 – Uppaal: timeliness
 – AADL: Engineer-friendly

• Two different types of architectures
 – Single processor or multicore & networked
 – Scalability studies ongoing...

• Challenge: identify future platform!
Questions?

www.ida.liu.se/~rtslab

Challenges for future platforms

- The static time slot-based scheduling of ARINC653 may lead to non efficient utilization of the processing resources.
- It could be interesting, in the event of a hardware failure, to be able to reconfigure the system, which means reallocating functions to safe modules.