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INTRODUCTION WHAT DO WE DO ?
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INTRODUCTION WHAT DO WE NEED ?

• Several tools
depending on
purpose of
analysis
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• Linear analysis (prediction tool)

- Production tool within the industry

- Panel models

- Analyse hundreds of configurations

• Medium fidelity (prediction tool)

- Dynamic linearization

- CFD aerodynamics + standard tools

• High fidelity (simulation tool)

- Coupled CFD + CSM (aero + structure)

- Time domain simulation
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INTRODUCTION WHY NONLINEAR TOOLS ?

• Nonlinear aerodynamics
‒ For sub- and supersonic speeds

the unsteady aerodynamics from
a linear panel model works quite
well

‒ In the transonic regime the linear
methods have deficiencies
(shocks etc. give nonlinear effects)
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INTRODUCTION WHY NONLINEAR TOOLS ?

• Possibility to analyse structural nonlinearities

‒ Control surface free play
‒ Store-to-pylon interface (friction)
‒ Nonlinear stiffness
‒ etc.
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INTRODUCTION WHY NONLINEAR TOOLS ?

• Increased complexity

‒ New complex external stores

‒ Higher risk of encountering
nonlinear phenomena
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INTRODUCTION DEVELOP TOOL / COMMERCIAL ?

• No commercial alternative available … =>

• Continuos development via R&D projects

• EU-projects
‒ UNSI 1997-2001 (nonlinear aerodynamics part 1) 100%
‒ TAURUS 2001-2004 (nonlinear aerodynamics part 2) 100%
‒ MOB 1999-2002 (Multidisciplinary, ASE etc) small part
‒ ALEF 2009-2012 (Loads project certain part aeroel.) small part

• FoT-25
‒ Active flutter supression 2004-2006

• NFFP
‒ NFFP4 2006-2008 (Robust aeroservoelastic analysis and optimization)
‒ NFFP5 2009-2014 (Effective process for airworthiness approval based on

robust aeroelastic analysis)

• EDA
‒ ISSA 2013-2016 (LCO, nonlinear aerodynamics & structure

non-modal approach) 100%
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NEW DEVELOPMENT NFFP5:   MAPPING CFDçèFEM

• Previous method:

‒ Could not handle underwing stores
(resulted in distorted geometry)

‒ Could only one way mapping
ua = H us

displacements from structure (s) to aerodynamics (a)

For non-modal approach it is also required to have

Fs = HT Fa

Forces from aerodynamics (a) to structure (s)
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NEW DEVELOPMENT NFFP5:   MAPPING CFDçèFEM

• New method(s):
- developed by KTH (D. Eller) in  NFFP5, tailored for
aeroelastic purposes, implemented in Dwfscope
http://www.larosterna.com/scope.html

Various methods available for mapping e.g.
‒ Radial Basis Functions
‒ Surface Projection Method

Other Features
‒ Smoothing capabilities
‒ Writes mapping matrix H
‒ Writes aeroelastic output files for Edge (.bdis)
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NEW DEVELOPMENT NFFP5:   MAPPING CFDçèFEM

• New method(s):

Can handle:
‒ Complex geometries (underwing stores)
‒ discontinuous deformations, e.g. gap between control

surface and wing
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NEW DEVELOPMENT ISSA:   NON-MODAL CFD-FEM

• New method:
- Developed by FOI, A. Jirasek & O. Amoignon
- Enables coupling the CFD solver Edge with an

external structural solver in time domain,
implemented in Extdyn

- Extdyn is a solver which integrates structural
equations in time domain. The mass and stiffness
matrices, M and K, of the structural problem are
defined and exported from NASTRAN

- can be run in steady state mode for a static analysis
or in time dependent mode for a dynamic
aeroelastic analysis

- Includes advanced data communication for parallel
computations

14

CFD   (Edge)

K, M   (Nastran)

ExtdynExtdyn



NOT CLASSIFIED
Anders Karlsson| AerospaceTechnology 2016|

NEW DEVELOPMENT ISSA:   NON-MODAL CFD-FEM

Coupling in Extdyn:
‒ integrates the equation of motion in the time domain

on a subset (Aset) of the original global set (Gset)
according to

Running the non-modal coupling:
‒ The non-modal coupling is run by starting three

different processes (programs) in different terminal
windows

‒ In practice: Only one script has to be started
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MODELLING ASPECTS GEOMETRICAL COMPLEXITY

18

750 000 points 1 945 934 points 4 264 161 points

• In the ISSA project several models were studied with
different geometrical complexity

• The wind tunnel tests were also performed with several
configurations (different external stores)

• For aeroelastic simulations – time accurate – the mesh
size has to be reasonable
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MODELLING ASPECTS COMPLEX  HARDWARE MODEL

• Model, designed and constructed by KTH, Prof. Ulf Ringertz and team, floor mounted with all
equipment inside fuselage

• Complex pylon design for mimicking real A/C suspension (sway brace)
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MODELLING ASPECTS GRAVITATIONAL FORCES
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• For configurations with underwing external stores the floor mounted WT model will give rise to
a static deformation



NOT CLASSIFIED
Anders Karlsson| AerospaceTechnology 2016|

CONTENTS

• Introduction

• New development

• Modelling aspects

• Validation

• Results

• Conclusions

22



NOT CLASSIFIED
Anders Karlsson| AerospaceTechnology 2016|

VALIDATION GRAVITATIONAL FORCES

• Effect of gravity on WT model including GBU  - validation for Y-direction
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Extdyn (G-set) Nastran
Min disp

[mm]
Max disp

[mm]
Min disp

[mm]
Max disp

[mm]
X -0.26 0.48 N/A N/A

Y -0.92 3.92 -0.92 3.92

Z -0.079 11.2 -0.079 11.2

Deformation due to gravitational forces in y direction

y
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VALIDATION STATIC DEFORMATION

• Comparison with existing modal approach and new non-modal approach
(direct coupling Nastran)
‒ Rigid (green - on pylon)
‒ static aeroelastic shape (brown - on pylon) for modal approach
‒ static aeroelastic shape (purple - on pylon) for non-modal approach
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RESULTS SIMULATION /   PREDICTION

• Coupled analysis (modal & non-modal formulation)
‒ Static (critical damping = 1 used)
‒ Dynamic (zero or structural damping used)

• Prescribed motion for generating GAF(w) from CFD
(Standard flutter analysis subsequently used)
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RESULTS CONFIGURATIONS  /  CASES

• Several configurations tested in the wind tunnel

• A selection of results presented here:
‒ Case 1: config1_00 (no wing tip missile, no GBU)

‒ Case 2: config2_0F  (wing tip missile CG forward, no under wing store)

‒ Case 7: config7_FR (wing tip missile CG rearward, GBU CG forward)

Case 1 mainly used for static aeroelastic analysis

Case 2 and 7 is mainly for dynamic analysis
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RESULTS STATIC DEFORMATION  - CASE 1

• Good correlation with exp . data but a small
offset observed

• Investigations made regarding
‒ Wind tunnel effects (not causing offset)
‒ Viscosity, Euler/NS  (not “causing” offset)

• Conclusions: The asymmetry found in WT
not reproducible in analysis
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RESULTS DYNAMIC PREDICTIONS

Main objective for dynamic predictions

• Damping and frequency
‒ as a function of speed

• Predict flutter speed
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RESULTS FLUTTER MECHANISM  - CASE 2

• Only modes 1 (bending) and 2 (torsion) couple and give flutter
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Mode 1: 1 Mode 2:  1.87 Mode 3:  7.83

Mode 4:  14.92 Mode 5:  23.21
Mode 6:  26.79
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RESULTS FLUTTER PREDICTION  - CASE 2

‒ Model: Wing tip missile
‒ Method: Medium Fidelity: Modal approach (5 modes)
‒ Frequencies: from GVT in wind tunnel (modes 1-3)
‒ Structural damping: g1=1, g2=1.3
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Increasing model fidelity

*) Modes 1 & 2

FE baseline Experiment

Flutter speed 1.03 1

Flutter frequency 1.06

WT frequencies
(WTF)

0.96

1.01

*

1.00

0.98

structWTF &
damping
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RESULTS FLUTTER MECHANISM  - CASE 7

• Only modes 1 (bending) and 2 (torsion) couple and give flutter

33

Mode 1: 1 Mode 2:  1.95 Mode 3:  3.36

Mode 4:  4.06 Mode 5:  7.64 Mode 6:  23.55
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RESULTS FLUTTER PREDICTION  - CASE 7

‒ Model: Wing tip missile + GBU (no sway brace)
‒ Method: Medium Fidelity: Modal approach (5 modes)
‒ Frequencies: from GVT in wind tunnel (modes 1-3)
‒ Structural damping: g1=1, g2=0.91, g3=2.1
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Increasing model fidelity

*) Modes 1-3

FE baseline Experiment

Flutter speed 1.07 1

Flutter frequency 1.09

WT frequencies*
(WTF)

1.00

1.01

WTF & struct
damping

1.04

0.99

WTF & struct
damping
& initial static
deformation

1.03

0.99 1
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RESULTS IMPORTANCE OF STRUCTURAL MODEL  - CASE 7

• Background: FE model updated from GVT
results

• Problem: Still differences can be found
compared to measured natural frequencies of
model in wind tunnel

• Cause: instrumentation such as accelerometers
in wing tip pylon not accounted for

• Effect: Too high predicted flutter speed and
flutter frequency

• Lessons learnt: Any small additional
mass must be included in the FE model
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RESULTS DYNAMIC SIMULATIONS

Two main objectives for dynamic simulations

• Stability
‒ “Easy” to include HiFi aerodynamics and structure

‒ Very time consuming

‒ Difficult to predict stability boundary

• Response (amplitude of oscillation)
‒ Only of interest for constant amplitude cases e.g. LCO
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RESULTS DYNAMIC SIMULATIONS  - STABILITY (CASE 7)

‒ CFD Model: GBU, no sway brace
‒ Method: Time domain simulation: Modal approach (5 modes)
‒ Frequencies: FE baseline
‒ Structural damping: No
‒ Normalization: Vel = velcurrent / velcase7
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‒ CFD Model: GBU, no sway brace
‒ Method: Time domain simulation: Non-modal approach
‒ Frequencies: FE baseline
‒ Structural damping: No
‒ Normalization: Vel = velcurrent / velcase7

38

Vel=0.956 Vel=0.978 Vel=1

To
ta

ld
ef

or
m

at
io

n
at

ac
c.

W
1

RESULTS DYNAMIC SIMULATIONS  - STABILITY (CASE 7)
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RESULTS DYNAMIC SIMULATIONS  - DAMPING (CASE 7)
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• Damping estimate from time history of accelerometer W1
• Sensitive physical quantity (difficult to estimate)
• Slightly higher Vflut for Non-modal approach

Modal Non-modal
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RESULTS EFFECT OF GRAVITATIONAL FORCES   – UNSTABLE CASE
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• Large effect on static deformation (as expected)

• For dynamic simulations:
‒ Small/no influence on stability characteristics
‒ Amplitude is different if gravitational forces are included

a=0°,      Vel=1

Green: rigid
Red: no grav. Forces
Blue: with grav. forces
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RESULTS EXPERIMENTAL DATA         (ISSA PROJECT)

‒ Three different configurations (complex model)
‒ Subcritical (with excitation) and flutter data
‒ Accelerometer data - uniaxial (W) and triaxial (WT)
‒ Optical deformation (QSYS)
‒ Unique aeroelastic data (although only low speed)
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RESULTS DYNAMIC SIMULATIONS  - AMPLITUDE

‒ Model: Wing tip missile
‒ Method: Modal approach (5 modes)
‒ Frequencies: from GVT in wind tunnel (modes 1-3)
‒ Structural damping: Yes
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RESULTS DYNAMIC SIMULATIONS  - AMPLITUDE

‒ Model: Wing tip missile + GBU
‒ Method: Modal approach (5 modes)
‒ Frequencies: from GVT in wind tunnel (modes 1-3)
‒ Structural damping: Yes
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RESULTS DYNAMIC SIMULATIONS  - AMPLITUDE

‒ Model: Wing tip missile + GBU, Method: Modal approach (5 modes)

‒ Experimental data: (Triaxial acc.  WT1 – WT6)
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RESULTS DYNAMIC SIMULATIONS  - AMPLITUDE

‒ Model: Wing tip missile + GBU, Method: Modal approach (5 modes)

‒ Experimental data: (QSYS markers 1 – 7)
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Exp. time 530-535

Simulation follows amplitude variation
(depending on location)=>

QS1
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CONCLUSIONS

• New methods for non-linear aeroelastic analysis
developed within NFFP5 and EDA R&D programs
‒ Better handling of complex geometries
‒ Non-modal coupling (platform for further development)

• In the EDA financed ISSA project
‒ Unique aeroelastic experimental data
‒ Complex Fighter model including external stores
‒ Static deformation
‒ Dynamic data (subcritcal as well as at flutter limit)

• Comparison with low speed WT data show:
‒ Fairly good agreement for static deformation
‒ Good agreement for flutter speed/frequency
‒ OK agreement regarding dynamic amplitudes
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QUESTIONS?

Thank you for your attention!
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