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Outline

* Work context: NFFP6 project

* Modeling and analysis using Uppaal
* Modeling and analysis using AADL
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Work Context: NFFP6 Project

e Separation of platform and application descriptions.

 Model both elements at an early conceptual stage:
— analysis is tractable;
— design inconsistencies are discovered early.
« Scalable and formal analysis of performance and feasibility

« Exploit the analysis results of current platforms for future
platforms.
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Work Context: NFFP6 Project

* Use of model-based design to
study design trade-offs.

» Investigation of methods and tools
for high level description and
automated analysis.

* Model different platform
architectures: today’s federated,
forthcoming multicore, any
emerging future platform.
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Current work

e Formal tool-supported design and analysis

» Study the modularity and scalability of Uppaal for application
deployment on a single node multicore platform.

* Model-based design using AADL

* Understanding the benefits and limitations of the AADL descriptions
and supporting tools for multi-node networked platforms.

e Provide methods to estimate shared resource access patterns and

analyze utilization in a multicore setting.
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Model-based design and Analysis of Avionic
Systems using Uppaal
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Uppaal Toolsuite
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Model-based design and Analysis using Uppaal

e Multicore platforms with a hierarchy of memories (local
caches, shared L2 cache and DRAM).

e Local scheduling at each core level.
« Application described by a set of periodic processes.
« FEach process has parameters:

— Worst case execution time (WCET)

— Worst case resource access (WCRA).

e QOutcome: Schedulability, core utilization and maximum
interference per access to shared memories.
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Reusable and reconfigurable frameworks
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Model-based design and Analysis of Avionic
Systems using AADL

“ AADL




Model-based desigh using AADL

e AADL (Architecture Analysis & Design Language) is a modeling
language to describe architectures and applications.

e Concepts to describe the computing and communication
elements, and the software applications.

— Independently!

» Flexible mapping of the application elements to the hardware.
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AADL for Multi-processor Platform description

« Alternative design models as a proof of flexibility
— Each CPM has a single core.
— Each CPM is a multicore processor.
— An imaginary future platform.

e Analysis of schedulability and performance using
AADL Inspector tool.

e Study the scalability.
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Multi-CPM single core platform

« PPM includes 2 CPMS and a network. AAM
«  Each CPM schedules 2 partitions using SW1 sSw2 SW3 sw4
ARINC653.

— major frame, criticality, partition slots

 AAM includes 4 SW applications, each consists

of 2 threads. Partl Part2

Partl Part2

» Threads are scheduled using a local scheduler

(alternative algorithms). CPM1 CPM2

« Bandwidth and latency constraints for network
and individual connections.

PPM
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AADL analysis tool: Inspector

e« Execution simulation
e Schedulability analysis
e Processor utilization and

response time analysis
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Multi-CPM multicore networked platform

« Alternative design models as a proof of flexibility

— Each CPM is a multicore processor.

* Reuse the experience from the Uppaal study and add
network characterization in AADL
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Imaginary Future Avionic Platforms




Rough sketch of approach

» Goal: will the design decisions taken earlier for the
original platform be suitable for the new platform?

e Describe the future platform to some extent and
reuse the application model in analysis.

e Or, analyze the application using a current
platform, relate the future platform to the current
platforms and reuse the analysis process.
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Summary

e Two different model-based tools to describe avionic
systems.

— Uppaal: timeliness
— AADL: Engineer-friendly
» Two different types of architectures
— Single processor or multicore & networked
— Scalability studies ongoing...

e Challenge: identify future platform!
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Questions?

www.ida.liu.se/~rtslab
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Challenges for future platforms

e The static time slot-based scheduling of ARINC653
may lead to non efficient utilization of the processing
resources.

It could be interesting, in the event of a hardware
failure, to be able to reconfigure the system, which
means reallocating functions to safe modules.
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