Model-based Design and Analysis
of Cyber Physical Systems

Jalil Boudjadar, Simin Nadjm-Tehrani, Ingemar Soéderquist

II “ LINKOPING €A VINNOVA
oWV UNIVERSITY o)

Outline

* Work context: NFFP6 project

* Modeling and analysis using Uppaal
* Modeling and analysis using AADL
o Intuitions for future avionic systems

e Conclusion

LINKOPING
TR ey

Work Context: NFFP6 Project

e Separation of platform and application descriptions.

 Model both elements at an early conceptual stage:
— analysis is tractable;
— design inconsistencies are discovered early.
« Scalable and formal analysis of performance and feasibility

« Exploit the analysis results of current platforms for future
platforms.

LINKOPING
II.“ UNIVERSITY

Work Context: NFFP6 Project

* Use of model-based design to
study design trade-offs.

» Investigation of methods and tools
for high level description and
automated analysis.

* Model different platform
architectures: today’s federated,
forthcoming multicore, any
emerging future platform.

Avionic Application Model
(AAm)

Function & Latenct ¥

Adrcraft model 81
:&—' Processing power .4
L
Adreraft model 22 Bandwith ¥

Power v

Mapped on PPM

Platform Performance Model [PPM)

!

ABOSPCAAD

LINKOPING
II." UNIVERSITY

Current work

e Formal tool-supported design and analysis

» Study the modularity and scalability of Uppaal for application
deployment on a single node multicore platform.

* Model-based design using AADL

* Understanding the benefits and limitations of the AADL descriptions
and supporting tools for multi-node networked platforms.

e Provide methods to estimate shared resource access patterns and

analyze utilization in a multicore setting.

LINKOPING
Il." UNIVERSITY

Model-based design and Analysis of Avionic
Systems using Uppaal

Uprviri

Uppaal Toolsuite

48 Ch\Users\abdbo42\Desktop\Work\\Project_Work\Memocodel6\ReadWriteModels\scalabilityl-30.xml - UPPAAL (=] ﬁ
. -based -
Automata ase File Edit View Tools Options Help
. .
modular description. Ba@oc/aaaR@<ss
Editor‘ Simulator | ConcreteSimuIatorl Veriﬁerl Yggdrasil|
. . 4 -
« Simulation and formal | s st T b vored + ez E
. . taskSched[6][core[6].queue.alt[0]]: Sched? |8 ..g E?}:E 1]) i
verification. 3 1o
S Task3
il S Tasks
. o < m |) 8 Tasks
e Reconfiguration and 3 Tass e
[b Next |[D Reset | R Task7
ﬂ .b °1 . t S Tasks
eXl 1 1 y' Simulation Trace :ggztiﬂ
) I P) Taskil
(WaitSched, AccessRequest, Init, Init, Init, In %) Taskio
accessExec[c]: Task20 — Core6 8 Taskl3 E
(WaitSched, AccessRequest, Tnit, Tnit, Init, In g ?S’ﬁ‘;
as|
Task2o g Task16 ; ;
(WaitSched, AccessRequest, Init, Init, Init, In___ Taskl7? a
) |E| %) Taskis Task0 Task1 Task2
reqCore[c][29]: Task29 — Sched8[29] — = Tzzklg
(WaitSched, AccessRequest, Init, Init, Init, In _ 2 Task20
il » fe = B
ile: w4 Task23 reqCorelc][1
Trace File: bey TaskZ:
4l Prev b Next } Replay ¥ Task2s WaitSched
[=1 Open][Save][M+ Random] :g Eigg T
B Taskzs
O) Taskzo Run
slow Fast [EMCache Tl
o « [

LINKOPING
TRy

Model-based design and Analysis using Uppaal

e Multicore platforms with a hierarchy of memories (local
caches, shared L2 cache and DRAM).

e Local scheduling at each core level.
« Application described by a set of periodic processes.
« FEach process has parameters:

— Worst case execution time (WCET)

— Worst case resource access (WCRA).

e QOutcome: Schedulability, core utilization and maximum
interference per access to shared memories.

LINKOPING
II.“ UNIVERSITY

Reusable and reconfigurable frameworks

e Modular design. lﬁ\ ‘ ’?
’;&:1 Tasks Tasks

o Statistical model]
checking for performance o

estimation. Corel W Core2 Core3 Cored

e Case study size: Hrcache ' Y Hcache I Hcache i Lrcache y

Currently 30 tasks
running on 8 cores. Py L2-cache]

}
DRAM ‘

LINKOPING
II.“ UNIVERSITY

Model-based design and Analysis of Avionic
Systems using AADL

“ AADL

Model-based desigh using AADL

e AADL (Architecture Analysis & Design Language) is a modeling
language to describe architectures and applications.

e Concepts to describe the computing and communication
elements, and the software applications.

— Independently!

» Flexible mapping of the application elements to the hardware.

11

LINKOPING
II." UNIVERSITY

AADL for Multi-processor Platform description

« Alternative design models as a proof of flexibility
— Each CPM has a single core.
— Each CPM is a multicore processor.
— An imaginary future platform.

e Analysis of schedulability and performance using
AADL Inspector tool.

e Study the scalability.

12

LINKOPING
Il.“ UNIVERSITY

13

Multi-CPM single core platform

« PPM includes 2 CPMS and a network. AAM
« Each CPM schedules 2 partitions using SW1 sSw2 SW3 sw4
ARINC653.

— major frame, criticality, partition slots

 AAM includes 4 SW applications, each consists

of 2 threads. Partl Part2

Partl Part2

» Threads are scheduled using a local scheduler

(alternative algorithms). CPM1 CPM2

« Bandwidth and latency constraints for network
and individual connections.

PPM

LINKOPING
Il.“ UNIVERSITY

AADL analysis tool: Inspector

e« Execution simulation
e Schedulability analysis
e Processor utilization and

response time analysis

14

@ AADL Inspector (C:/Program Files (x86)/AADLUnspector/Al-1.5/examples/patterns/partitions.aadl)

= |] [l

File View Wizards Tools ?

CoRBEedEe B wme

 [aADL_Project > ARINCE53 > partitions >|singleCPU 3| Multicare 3

? |Static Analysis‘ Schedulability |Prolog FactslAI Scriptleebug Tools|

L L Segmencet MEMUKY 7 ~

273| segment2 MEMORY ; L5 @

274[END ram.i; test entity |«

275 onse time computed from simulatio cpu No deadline misse

276|PROCESSOR powerpc of preemptions cpu 0

277/END powerpc; of context switches cpu 1142

278 onse time computed from simulatic cpuswlt worst = 18, best =

279|PROCESSOR IMPLEMENTATION powerpc.i onse time computed from simulatio cpuswlt worst = 21, best =

280|SUBCOMPONENTS onse time computed from simulatio cpusw2t worst = 23, best =

281 partl : VIRTUAL PROCESSOR partitionl;

282 part2 : VIRTUAL PROCESSOR partiticon2; i

283|PROPERTIES -

284| Scheduling Protocol => (RRINC6E53); 'l | 1 }

285|-- RARINCE53::Partition Slots => (10ms, 15ms,

286|-- RRINCE53::Slots Allocation => (reference(|= < | Iy 4 I | =

287 ARINCE53::Module Schedule =» (A

288 [Partition =» reference (partl); > O & ™ 0 5 10 15 20 25 30 35 40 45 50 55 60 6 -

289 Duration => 10ms; cpu ~

290 Periodic Processus Start =» false; 1, | & swl r— S -

291 [Partition => reference(partl); 1 - - ; -

292 Duration => 15ms; 2 - — ; 1

293 Periodic_Processus Start => false;], & sw2 e e

294 [Partition => reference(partl); 3 ' - ; -

295 Duration => 10ms;

296 Periodic_Processus_Start => false;]):

257| ARINCE53::Module Major Frame => 35ms;

298|-- RRINCE53::Criticality => Level E RPPLIES

299 RARINCE53::DAL =»> Level E APPLIES TO partl,

300/END powerpc.i; - B
< | I 3 %

LINKOPING
UNIVERSITY

Multi-CPM multicore networked platform

« Alternative design models as a proof of flexibility

— Each CPM is a multicore processor.

* Reuse the experience from the Uppaal study and add
network characterization in AADL

15

LINKOPING
TR

Imaginary Future Avionic Platforms

Rough sketch of approach

» Goal: will the design decisions taken earlier for the
original platform be suitable for the new platform?

e Describe the future platform to some extent and
reuse the application model in analysis.

e Or, analyze the application using a current
platform, relate the future platform to the current
platforms and reuse the analysis process.

17

LINKOPING
Il.“ UNIVERSITY

Summary

e Two different model-based tools to describe avionic
systems.

— Uppaal: timeliness
— AADL: Engineer-friendly
» Two different types of architectures
— Single processor or multicore & networked
— Scalability studies ongoing...

e Challenge: identify future platform!

18

LINKOPING
II.“ UNIVERSITY

Questions?

www.ida.liu.se/~rtslab

LINKOPING
II.“ UNIVERSITY

20

Challenges for future platforms

e The static time slot-based scheduling of ARINC653
may lead to non efficient utilization of the processing
resources.

It could be interesting, in the event of a hardware
failure, to be able to reconfigure the system, which
means reallocating functions to safe modules.

LINKOPING
II.“ UNIVERSITY

