THE FUTURE OF LOW-SIGNATURE PLATFORMS

Anders Höök, Christer Larsson, Jakob Bjerkemo 2016-10-11

Funded by NFFP/Vinnova/FMV/Swedish Armed Forces

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent

THREAT DEVELOPMENT

THREAT DEVELOPMENT

- Older radar systems were very range-capable
 - S-200

S-200 Square Pair

- Today's systems do not reach significantly longer...
- ... but are still much better

THREAT DEVELOPMENT

Improvements:

- system bandwidth
- target update rates
- no. of tracked / engaged targets
- waveform agility
- multifunctionality (surv., tracking, fire control)
- tracking capability
- jamming resistance
 - flexible search patterns
 - frequency agility
 - sidel-lobe blanking
 - adaptive side-lobe cancellation

LO AIRCRAFT AGAINST LRSAM RADARS

- Reducing range
 - From: 450 km @ 0 dBm²
 - To: Range km @ RCS dBm²

- Not very meaningful to use low RCS against LRSAM
 - especially considering the low frequencies
- Thus termed:
 - AA Anti-Access
 - AD Area Denial

SRSAM TRENDS

- No. of missiles per firing unit increases
 - Tunguska 4
 - Tunguska 8
 - Pantsir 12
 - Morfei 36 (?)
- Conclusion:
 - Dimensioning against saturation attacks

SRSAM TRENDS

Increased update rate

- Turret aiming => vertical launch
 - Tor, Morfei, MICA, IRIS T...

- Observation: response-time reduction
- Conclusion: dimensioning against:
 - high-velocity missiles
 - @ low altitudes
 - all directions

MISSILES AGAINST SRSAM RADARS

Reducing range

- From: 25 km @ -10 dBm²

- To: Range km @ RCS dBm²

• Example:

- RCS from hemispherical IR-window = -15 dBm²
- Conclusion:
 - Cruise missiles are viable candidates for RCS reduction

RCS OF MISSILES

MISSILES AGAINST SRSAM RADARS

- Previous example: -25 dBm² <=> 10 km detection range
 - M 3 <=> 10 illuminations by a 1 s surv radar
 - M 4 <=> 7 illuminations by a 1 s surv radar
- Assume
 - 2 s response to firing
 - 30 g acceleration of SA missile
- SA missile hits after
 - 4.6 s @ 3.2 km range (M 3)
 - 4.1 s @ 2.5 km range (M 4)
- Conclusions:
 - close shave, no second chance
 - jamming + maneuvering can tip balance in cruise missile's favour
 - signature management of cruise missiles is meaningful

MISSILE RADAR ABSORBERS

- High speed only in terminal phase
 - M 3-4 is well below plasma formation
- Some fibre composites might work, e.g. cyanate ester / quartz
 - T_q close to 400 °C
 - Low ϵ'_r and ϵ''_r , suitable for EM design
- Topics
 - edge scattering
 - grazing incidence
 - curved surfaces
 - frontal curvatures relatively small

MISSILE RADAR ABSORBERS

- NFFP6: Signature management of low-altitude missiles
 - Dr C Larsson, Saab Dynamics
 - Prof D Sjöberg, Lund University
- Problem:
 - Planar absorber designs are often used for curved surfaces
 - Absorber capacity degrades
- Highlights:
 - Resistive layers, magnetic layers, circuit-analog absorbers, bulk loss materials (e.g. doped foams)
 - Analytical models, full-wave simulations
 - Bulk loss absorbers *generally* better than thin-layer designs

WEAK SPOT

- Low-frequency radars?
 - High RCS against current cruise missiles
 - Would offset signature management

- Normally associated with LR-systems
 - Poor low-level function
 - Large <=> Low update rates
 - Aircraft integration very difficult
- Still: high RCS
 - Room for innovation!

AIRCRAFT RCS APPROACH

RCS IN FIGHTER COMBAT

- Keeping everything else equal, the statistical outcome of a duel is noticeably affected by a figure-of-merit, M, that describes one's radar performance relative to one's RCS.
- Simplistically: Largest M wins
- Realistically: M-deficiency can be managed by radar discipline, numbers, tactics, co-operation, performance of other sensors, jammers and links, weapons performance, agility and unpredictability
- But that becomes increasingly harder as dM = M M increases.
- Conclusion:
 - Keeping fighter RCS in check is and will be important

$$M = \frac{P_{out}A_{ant}^2}{\sigma}$$

RCS IN FIGHTER COMBAT

Cost control by requirement relaxation

- Develop RCS requirement against AEW and fighter radars
- "Spill-over" limits RCS at lower frequencies
 - higher UHF and upwards
- Develop tactics, EW and armament to handle remaining threats
 - VHF and lower UHF

RCS PRICE TAG

- Cost control by research
- Costs divided into
 - NRE
 - Production
 - Maintenance
- Other penalties
 - Sensor limitations
 - Interoperability issues
 - Weapons load
 - Availability
- But not
 - Flight envelope, maneuverability, action radius

