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ABSTRACT
This work presents the development of a methodology that will perform the optimization, or
maximization, of the stiffness of a structure while its structural volume is gradually removed, in
order to obtain a structure having stiffness close to the original one, however using only a fraction
of the material. This structure may be part of a fluid-structure system and is subject to external static
loads, as well as loads imposed by the fluid. The discretization can be made with an unstructured
and irregular mesh, and the BEFSO (Bi-Directional Evolutionary Fluid-Structural Optimization)
method is used. The developed software was capable of optimizing cases found in the literature, and
also allowed the optimization of cases not easily optimized when conventional methods that use
regular meshes, found in non-commercial programs, are employed.
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INTRODUCTION
Recently, the topology optimization methods have been widely studied as an alternative into the
development of optimal structural concepts, especially in situations where the mass of the structure
is of great importance, such as in the aircraft and aerospace industry. A presentation of these studies
can be found in Paulino (2013). These concepts are used in the early stages of a project, where is
looking for an initial form of the structure which will then be improved over its development
process, and it is therefore critical, because it limits the ways that the final structure may have.

There are several general methods of topology optimization, the main ones being the BESO (Bi-
directional Evolutionary Structural Optimization) and SIMP (Solid Isotropic Material with
Penalization), as described by Huang and Xie (2010). The main difference between these methods
is how the optimized variable is treated, in this case the elements of the structure: BESO method
treats them in discrete manner, i.e., each element may have a value that represents its presence or
another value that represents its absence, while the SIMP method treats them continuously, i.e.,
each element has a density value between 100% and 0%. A detailed analysis of the differences can
be found in Huang and Xie (2010). A variation of the BESO method is the BEFSO method (Bi-
directional Evolutionary Fluid-Structural Optimization), termed by Vicente (2013). This work
includes a modification to the BEFSO method, which deals specifically with the evolutionary
topology optimization applied to systems with fluid-structure interaction.



The main objective of this work is to contribute with the improvement of the BEFSO method. This
unfolds in two specific objectives: to develop an extension of the method that allows its use with
irregular and unstructured meshes, and to develop software with open source, programmed
completely, capable to solve cases of more complex boundary geometries. To verify these
developments, comparisons were made with cases found in the literature, and a new case is
optimized to exemplify the capabilities of the expanded method. The proposed expansion consists
of a change in the calculation of the sensitivity values.

Several cases to be optimized cannot be efficiently discretized with regular meshes, such as aircraft
wings, because the domain cannot be divided into regular elements. In such cases, the domain can
be approached using a greater quantity of regular elements, but with the proposed method it is
possible to discretize the structure with less elements without losing the boundary profile.

THEORETICAL BACKGROUND

Structural optimization
The structural optimization looks for the improvement of structural efficiency through the
optimization of some predefined parameter or function, such us minimum mass, maximum
stiffness, maximum buckling load, etc., while reducing cost. A structural optimization example is
the removal of unnecessary material in square section beams, giving rise to I-beams, which have
less weight and consume less material and is more economical. The optimization should also take
into account constraints such as failure stress, critical natural frequency, allowed displacements, etc.

One may define three classes of structural optimization: size optimization, shape optimization and
topology optimization. The first seeks to change only the dimensions of the structural members.
Shape optimization also scales the cross-section of structural members, but in addition, one can
modify the position of members in order to support more efficiently the load. Both of these methods
depend, however, on an initial structural concept, not being able of adding or removing members.
Unlike other methods, the topology optimization is used to generate this initial concept.

Topology optimization
Topology optimization serves to generate a conceptual structure that is superior in some domain. In
this work, one seeks to improve the structural efficiency. To this end, one must increase the
stiffness and decrease the material. Thus, starting with an arbitrary structure under loads and
constraints, the optimization removes areas of material that are not very requested, and therefore, do
not contribute much to the structural stiffness.

Topology optimization methods require a discretization of the domain, an objective function which
represents the performance of the structure, and a set of constraints limiting the modifications. The
method BEFSO is used in this work, a modification of the BESO method considering fluid-
structure systems. The objective function is the energy absorbed by the structure because it is a way
to quantify its stiffness, and the amount of material is considered as a constraint. One structure that
uses more material has more stiffness, it improves the objective function but with material addition,
which turns the structure less efficient. To prevent this, the amount of material that can be used is
limited, and thus the optimization seeks to improve the stiffness of a structure using less material.

Fluid-structure
A fluid-structure system comprises fluid and structural domains. Some examples could be a pipe, a
pumping piston, an airplane wing, among others. The system is said coupled when each domain
affects the other, what happens in dynamic cases and prevents their separation into two separate
problems, forcing their coupled resolution. However, in static cases, like in this work, the two



domains could be solved separately; the fluid is calculated, and the solved pressures are enforced on
the structure.

Although the calculation by finite elements is done separately for each domain, the modification of
the structure during the topology optimization can affect both domains simultaneously if some
interface elements are added or removed. Thus, every time the structure is modified, the fluid needs
to be recalculated. Therefore, some modification to the method should be made.

The method BESO
The BESO method is the basis of BEFSO method, and its goal is the optimization of an objective
function by removing or adding elements of a structure that may be subject to a given constraint,
and this constraint is partially applied, increased gradually, through several iterations. The method
consists of a series of modules, each having a specific purpose, but no a fixed form. Details of
implementation of the method can be found in Huang and Xie (2010).

Huang and Xie, 2010, compare the methods SIMP, ESO, BESO and continuous variation. Although
the latter presents the best results, BESO method achieves a similar result, while it requires less
processing time among all compared methods. Moreover, this method has advantages concerning to
its modularity and relative simplicity; because of these characteristics it was selected as optimizer
tool in this work.

This method requires an objective function, which quantifies the structural feature to be optimized.
This depends on the structural configuration at each iteration. In addition, the objective function is
used to define the sensitivity function. The most frequently used functions are frequency response
(Yoon et al., 2007; Vicente, 2013) and stiffness (Huang and Xie, 2010), but many others also exist,
such as energy dissipation rate due to the viscosity of a fluid (Gersborg-Hansen et al., 2005) or
effective diffusivity of nutrients through a porous structure, among others.

Structured, unstructured and regular mesh
A structured mesh is a mesh where the numbering of the elements follows a defined order. As an
example, consider a mesh of quadrilaterals with 5 elements horizontally and 4 vertically. Examples
of meshes with these characteristics are shown in the left column of Fig. 1.

Figure 1: Examples of regular and irregular meshes, structured and unstructured.

A structured mesh does not need extra information to determine the connectivity of the elements;
while unstructured meshes depends on a connectivity matrix that determines which elements are
connected to each other, which increases the complexity of the implementation.

All elements are identical in a regular mesh. Meshes with these characteristics are shown on the
upper row of Fig. 1, with the advantage that it is only necessary computing and storing a matrix of



elementary stiffness; while irregular meshes require the calculation of the elementary matrix of each
element, which significantly increases the computational cost.

In general, the topology optimization of a system is performed using a structured and regular mesh.
This simplifies the implementation, but imposes limitations on the type of system that can be
optimized. An alternative to this type of mesh is the use of conventional finer meshes; increasing
the number of elements enables the discretization of curves and other features through ladders.
However, as more elements are used, the computational cost is significantly increased because of
the quantity of variables.

METHODOLOGY
This work was programmed in MATLAB, implementing a 2D hard-kill BEFSO method. The
choice of this method instead of a soft-kill version is due to lower computational cost of the first,
which has very similar results as the second one. The procedure of the program is shown in Fig. 2.

Figure 2: General procedure of optimization used by the method BEFSO.

Problem formulation
The analyzed problems involve the structural optimization of fluid-structure systems, seeking to
minimize the structural compliance, which is equivalent to maximize the stiffness. The mesh of the
system is not changed during the optimization. All problems are firstly described by a series of data
concerning the mesh (position of nodes and connectivity matrix), boundary conditions (forces and
displacements, and prescribed pressures, on certain degrees of freedom), structural material
properties (Poisson's ratio and Young's modulus) and initial regions of the fluid. It is also informed
the final desired volume fraction and rate of evolution, as well as regions in which the structure
cannot be removed.

Current configuration structure
The configuration of the structure in a given iteration is determined by a vector x of size equal to
the number of elements used to discretize the domain. Each element of this vector can take a value
of 0, representing an empty space or filled with fluid, or 1 representing a structural element. A
second vector distinguishes between void elements having no stiffness, and thus they are removed
from the total stiffness matrix, or fluid elements.

An empty space will be occupied by fluid if there is fluid in the neighborhood. Some elements are
always fluid, defined in the formulation of the problem. To determine the fluid elements, the flood-
fill is used, where empty elements beside fluid elements are occupied, repeating the process until
there are no more empty elements in this condition.

Modification of the structure
After calculating all elementary filtered sensitivities, the elements are sorted according to their
sensitivity value, and the elements with the lowest values are removed until the volume of the



retained elements is equal to the volume defined by the constraint. This corresponds to the removal
of elements that contribute less to the structure. That is, the least loaded elements are removed
because their removal has the least impact on the structure as a whole when compared to the impact
of the removal of other more loaded elements. In this sort are also considered previously removed
elements, having a sensitivity value due to the filtering process. Thus, if a removed component has
a value larger than an element that would be maintained, the first is re-included and the second is
removed. However, only a certain volume of elements may be re-included.

RESULTS AND DISCUSSION

Verification
A comparison between the results obtained by the developed program and those obtained by
Vicente (2013), was performed in two cases. Figure 3 shows the comparison of results for one case.

The case refers to half a piston, halved due to its symmetry, having regular mesh and movable
interface.

Half of a piston with 8375 elements

Figure 3: Comparison of results found by Vicente, 2013, at left, and the developed software, at right. The colored

areas represent the fluid.

Aircraft wing
As an example of the capabilities of the program, it has been proposed the optimization of the inner
structural cross section of an airplane wing. In this case, there is a fixed interface between the fluid
and the structure, because the external profile of the wing is determined by its aerodynamic
behavior that is not simulated here. One NACA 4412 profile was chosen, and the distribution of
external pressure caused by air during its operation is given by Allen (1939), depending on the
dynamic pressure, which is given by:
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Uq arρ= (1)

where ρar is the ar density and U is the flow velocity. Table 1 shows the values used for the
simulation. To generate the mesh of this case, the GMSH program was used. The result of the
optimization is shown in Fig. 4.



Table 1. Values used in the simulation of wing profile NACA 4412

Flow velocity U 200 km/h (55,6 m/s)

Air density ρar 1.007 kg/m3

Dynamic pressure q 1554.0 Pa
Altitude H 2000 m

Wing profile NACA 4412
Angle of attack Α 13º57’

Chord c 2 m
Thickness of the fixed interface layer T 10 mm

Number of elements n 15790

Figure 4: Results for optimization of the internal structural cross section in a wing profile NACA 4412. The

colored regions represent the fluid with the fringe indicating the pressure levels. The gray circular

region represents a beam perpendicular to image, where the fixed conditions are applied.

CONCLUSIONS
A comparison of solved cases for validation showed that the implemented software was capable to
optimize cases with regular or irregular mesh, and with or without movable interface. The meshes
used in these cases are structured, but for the developed program there is no difference between
structured and unstructured meshes because it does not make use of the simplifications of the
structured meshes.

The presented aircraft wing is optimized using an unstructured and irregular mesh. The wing was
chosen as fixed only in a single beam. Wings of different aircrafts, even with the same profile, may
have different structures; the simulated wing does not refer to some specific aircraft, it is used only
as an example to show the functionality of the software developed.

It was possible to implement the topology optimization code BEFSO in MATLAB without any
dependence on external commercial programs. This was verified with cases found in the literature,
and it has been used to optimize an aircraft component to demonstrate its potential.
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