Effect of in-plane and out-of-plane waviness on the compressive strength of UD NCF-reinforced composites

L.E. Asp, D. Wilhelmsson, R. Gutkin and F. Edgren

Div. of Material and Computational Mechanics

The NFFP-project KOMPRESS

Compressive failure of complex NCF composite structures

PhD-student: Dennis Wilhelmsson

Main supervisor: Prof. Leif E. Asp Dr. Renaud Gutkin

Co-supervisor:

Project manager: Dr. Fredrik Edgren

Div. of Material and Computational Mechanics

Emission and fuel costs challenge

World Passenger Air Travel by Volume, 1950-2012

ICAO: International Civil Aviation Organization IATA: International Air Transport Association

Aero-engine efficiency

Image from Wikipedia, Author: K. Aainsqatsi

Weight

Increased diameter => Increased bypass => Increased weight (1 kg => 2.25 kg)

Image from GKN Aerospace

Dept. of Applied Mechanics

GKN Aerospace - **OGV**

Section A-A

OGV - Complex geometry

Conventional laminate

Carbon fibre architectures

Prepreg

NCF=Non Crimp Fabric

Weave

ZOLTEK™

Image from www.Zoltek.com

Image from www.medfish.com

Compressive strength

 X_C / X_T

Prepreg: 70 %

NCF: 40 %

CHALMERS

Compressive failure of unidirectional NCF composites

Objectives: Study the compressive stiffness and strength experimentally. Develop a method to characterize fibre orientations.

Motivation: Gain understanding of compressive failure in NCF composites for future model development

Div. of Material and Computational Mechanics

CHALMERS

Background and outline

- 1. The compressive strength and stiffness is controlled by fibre waviness!
- 2. The effect of material characteristics on the waviness?
- 3. The effect of waviness on the compressive stiffness and strength?
- 4. A method the characterize the waviness?

Waviness out-of-plane

Fibre misalignment angle from waviness

Compressive failure

Initial fibre misalignment of critical importance!

CHALMERS

Dept. of Applied Mechanics

Compressive failure

t = 2 mm

Kink-Band through the thickness

Measurement of fibre misalignment angles

A comprehensive test series

Effect of material characteristics

CHALMERS

Stiffness - Overview

Stiffness - E (V_f)

Stiffness - Knock-down

Stiffness - Knock-down

Strength - Overview

Strength - Maximum angle

Strength - Mean angle

Probability distribution

Probability distribution

Compressive strength

Compressive strength

Conclusions

Dept. of Applied Mechanics

Acknowledgements

Work in progress - Spatial distribution of θ

