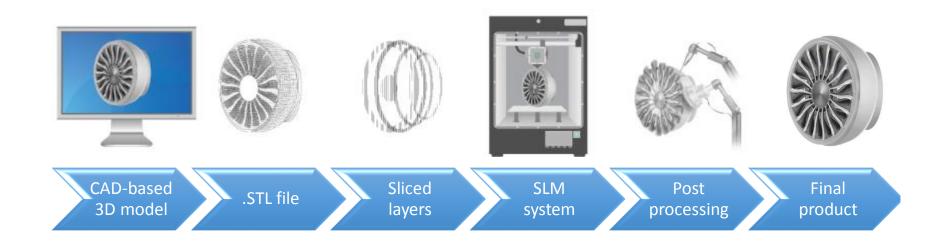
Swedish Aerospace Technology Congress 2016

A review of selective laser melting - Process parameters and its influence on microstructure, defects and strength in superalloy Alloy 718

Authors: Tahira Raza¹, Joel Andersson¹, Lars-Erik Svensson¹ and Magnus Holmquist²

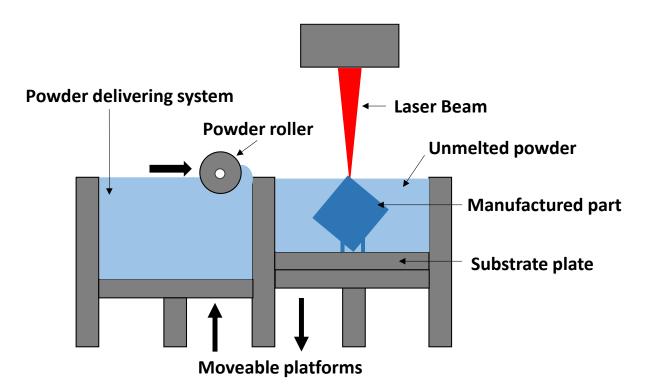
¹Dept of Engineering Science, University West, SE-46186 Trollhättan, Sweden ²GKN Aerospace Sweden AB, SE-46181 Trollhättan


tahira.raza@hv.se

Selective laser melting (SLM) Process chain

SLM process

Advantages


- Prototyping
- □ Low-volume fabrication of expensive components
- □ Individually customized products
- Possibility of producing geometrically complex components
- Minimum waste of material

Challenges

- □ Surface roughness
- Internal pores
- Delamination due to residual stresses
- □ Long processing time

SLM process

SLM process parameters

Laser related parameters

Laser power, spot size, pulse frequency, pulse duration

Gamma Scan related parameters

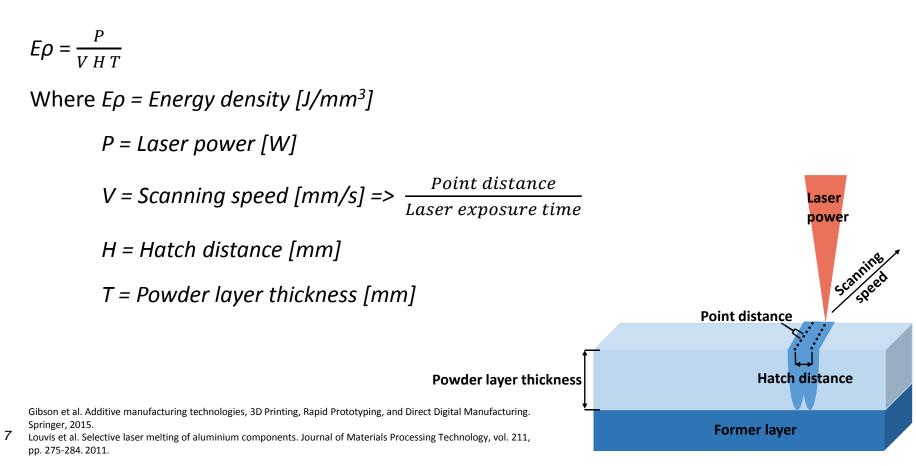
Scanning strategy, scanning speed, hatch distance

Powder related parameters

 Particle size, shape and distribution, powder bed density, layer thickness, material properties, such as melting temperature, thermal conductivity

Temperature related parameters

 Powder bed temperature, powder feeder temperature, temperature uniformity



Process parameters

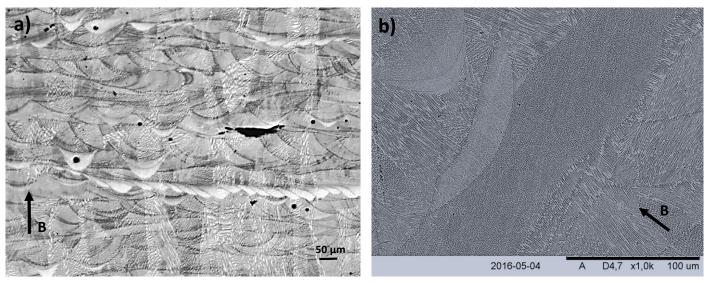
Parameter	Unit	Description	
Laser power	W	The power of the laser beam which fuses the powder with the substrate	
Scanning speed	mm/s	Travel speed of the laser	
Powder layer thickness	mm	The height of each powder layer	
Hatch distance	mm	The distance between two scanned lines	Laser
Point distance	mm	The distance between laser hits	power
Exposure time	ms	The time that laser remains at 1 point	mine
		Point di Powder layer thickness	istance Hatch distance

Former layer

Energy density

Alloy 718

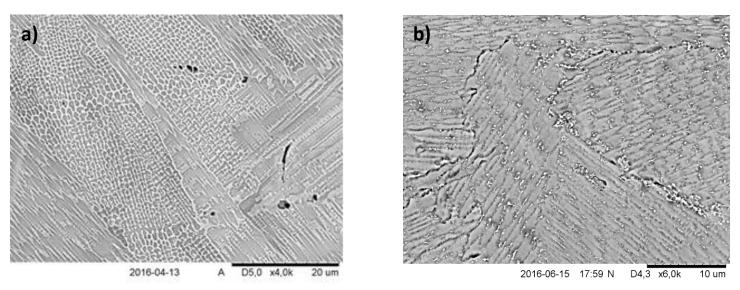
Ni	Cr	Fe	Nb	Мо	Ti	Mn	С	Al	Со
Bal.	19	18	5	3	0.90	0.04	0.05	0.48	0.08
Si	N	Cu	В	Ca	Mg	Р	S	Se	
0.04	0.02	0.02	<0.006 (ppm)	<0.010 (ppm)	<0.010 (ppm)	0.015 (ppm)	<0.010 (ppm)	<0.001 (ppm)	


Chemical composition, wt %

8

- Iron-nickel based superalloy
- □ Nuclear, aerospace, oil and gas industry
- Excellent creep properties, oxidation resistance and hot corrosion resistance
- Excellent weldability

Microstructure of SLM-manufactured

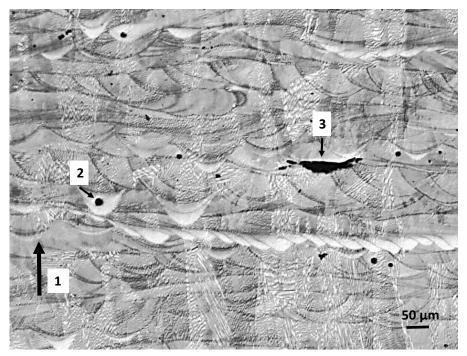


OM image of as-manufactured Alloy 718.

SEM image of layer development.

Microstructure of SLM-manufactured Alloy 718

SEM images showing a) columnar grain structures and b) segregation of Nb and Mo.

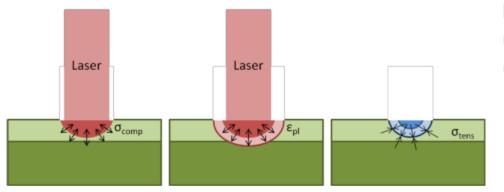

- Columnar dendrite grains
- Segregation of Nb and Mo
 - Laves phase

Raza et al. A review of the effect of selective laser melting process parameters and its influence on microstructure, defects and strength in the iron-nickel based superalloy Alloy 718. 2016

10

Process induced defects: porosity

- Gas porosity entrapped gas in the powder particles.
- Lack of fusion insufficient heat input to the material.


OM image of as-manufactured Alloy 718, showing (1) build direction, (2) gas porosity, (3) lack of fusion.

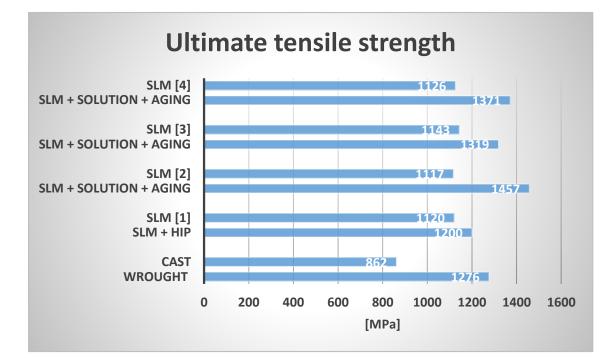
G.K.L. Ng, A.E.W. Jarfors, G. Bi, H.Y. Zheng. Porosity formation and gas bubble retention in laser metal deposition. Applied Physics A, 97 (2009), 641-649., 2009.
Raza et al. A review of the effect of selective laser melting process parameters and its influence on microstructure, defects and strength in the iron-nickel based superalloy Alloy 718. 2016

Process induced defects: residual stresses

- □ Process parameters:
- Part height
- Scanning strategy
- Heating conditions

□ Mechanism causing residual stresses

- Temperature gradient
- Thermal contraction


Kempen et al. Lowering thermal gradients in selective laser melting by pre-heating the baseplate. 2013.

Mercelis et al. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, vol. 12, pp. 254-265. 2006.

12 Chlebus et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A, vol. 639, pp. 647-655. 2015.

Mechanical properties of SLM-manufactured Alloy 718

[1] Amato et al. Acta Materialia, vol. 60, pp. 2229-2239. 2012.

13 [2] Chlebus et al. Materials Science and Engineering: A, vol. 639, pp. 647-655. 2015.

[3] Wang et al. Journal of Alloys and Compounds, vol. 513, pp. 518-523. 2012.

[4] Zhang et al. Materials Science and Engineering: A, vol. 644, pp. 32-40. 2015.

Summary

□ Laser power, scanning speed, layer thickness and hatch distance.

- □ Columnar dendrite grains
 - Laves phases
- Strength and hardness of the SLM-manufactured Alloy 718 increases with heat treatments and are comparable with wrought Alloy 718.
- □ Common voids in SLM-manufactured Alloy 718:
 - Gas porosity
 - Lack of fusion
 - Residual stresses
 - Surface roughness

□ Heat treatment necessary to achieve desired properties.

Tahira Raza tahira.raza@hv.se

Solutions

Residual stresses

- Heating of substrate plate
- Scanning strategy

Surface roughness and porosity

Re-melting strategies

Island scanning strategy

Kempen et al. Lowering thermal gradients in selective laser melting by pre-heating the baseplate. 2013.

16 Mercelis et al. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal, vol. 12, pp. 254-265. 2006.

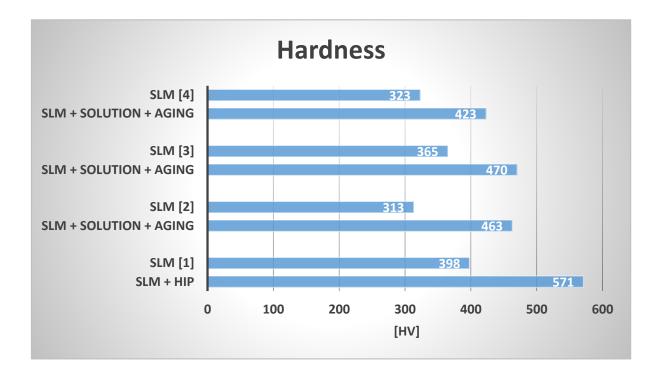
Chlebus et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A, vol. 639, pp. 647-655. 2015.

Mechanical properties of SLM-manufactured Alloy 718

Reference	Experiment	Hardness [HV]	Tensile strength [Mpa]	Yield strength [Mpa]
Amato et al. [1]	SLM	398	1120	830
	SLM + HIP	571	1200	930
	SLM + HIP + Solution	469		
Chlebus et al. [2]	SLM	313	1117	723
	SLM + Solution + aging	463	1457	1241
Wang et al. [3]	SLM	365	1143	903
	SLM + Solution + aging	470	1319	1132
Zhang et al. [4]	SLM	323	1126	849
	SLM + Solution + aging	423	1371	1084
	SLM + Homogenization + Solution + aging	417	1371	1046

[1] Amato et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Materialia, vol. 60, pp. 2229-2239. 2012.

17


[2] Chlebus et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A, vol. 639, pp. 647-655. 2015.

[3] Wang et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds, vol. 513, pp. 518-523. 2012.

[4] Zhang et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Materials Science and Engineering: A, vol. 644, pp. 32-40. 2015.

Mechanical properties of SLM-manufactured Alloy 718

