Protection of semi-military and civil aircraft

Johan Friede
Göteborg, April 12th, 2007
Contents

- Terrorist threats to aviation
- Some MANPADS characteristics
- Challenges in protecting civil and semi-military aircraft against MANPADS
- Protection technologies and concepts
The threats and associated protection concepts

- Hijacking-misuse
 - Typical scenario
 - 911
- Protection
 - Armed officers
 - Passenger screening
 - Intelligence
 - Misuse detection systems
 - Automated collision avoidance and landing systems
The threats and associated protection concepts

- Bombings
 - Typical scenario
 - Lockerbie
- Protection
 - Passenger screening
 - Cargo screening
 - Intelligence
The threats and associated protection concepts

- Cyber related threats
 - Typical scenario
 - Passive listening
 - Closing line
 - Altering line
 - Substituting line
 - HF
 - VHF
 - SATCOM
 - BEACON
 - TCAS
 - ATC
 - DGPS
 - ILS
 - MLS
 - VOR
 - DME

- Protection
 - Safeguarding ground based assets
 - Jamming resistant antennae (directed)
The threats and associated protection concepts

- Radiation threats
 - Typical scenario
 - Eye damaging lasers
 - Incident has occurred!
 - High Power Microwave
 - Futuristic
 - Protection
 - Likely none required
The threats and associated protection concepts

- Unguided weapons
 - Typical scenario
 - Small caliber gunfire
 - .50 cal anti-air gun
 - Rocket Propelled Grenades
 - In general limited range weaponry
 - Protection
 - Intelligence
 - Armor
 - Restricted access to airport vicinities
 - The dumbest weapons are often the most difficult to counter…
The threats and associated protection concepts

- Guided weapons
 - Typical scenario
 - Command to Line of Sight
 - Beam Riders
 - MANPADS
 - Protection
 - Arms control
 - Intelligence
 - Susceptibility reduction – signature management
 - Vulnerability reduction
 - A – Armor
 - B – Bury
 - C – Consolidate
 - D – Duplicate
 - E – Eliminate
 - F – Fly very high
 - Counter-MANPADS-system
Man-Portable Air Defense System facts and figures

- **IR MANPADS**
 - Light weight, compact, cheap
 - Relatively easy to use
 - Generally small warhead
 - Generally contact fuse – has to make direct hit
 - Simpler models widely proliferated
 - Likely multiple launches in attack
MANPADS facts and figures

Countries with IR MANPADS
- Over 700,000 MANPADS have been produced worldwide since the 1970s\(^1\)
- 35 MANPADS engagements over 10 years, 24 a/c downed, 500 people killed\(^4\)

Location of “non-state” organizations with IR MANPADS
- 150,000 MANPADS estimated in the hands of “non-state” organizations\(^2\)
- Prices as low as 5,000 $US\(^3\)

\(^1\) CSIS, “Transnational Threats Update,” Vol. 1, No. 10, 2003
\(^2\) Jane’s Intelligence review February 12, 2003
\(^3\) Jane’s Terrorism and Insurgency Centre, “Proliferation of MANPADS and the Threat to Civil Aviation”, August 13, 2003
Manpads attack timeline

- Aircraft rolls down the runway
- Target aircraft picked; prepare missile, activate battery and spin-up missile seeker
- Tracking, lock-on and pre-launch confirmation
- Launch of missile
- MAW detects UV emissions, possible missile
- MAW track possible missile
- Missile confirmed
- Calculate optimum decoy timing
- Dispense decoys
Examples of MANPADS attacks

- In Nov 2002 two SA-7 missiles was fired against an Israeli Boeing 767 taking off from Mombasa
- In Nov 2003 one SA-7 and one SA-14 was fired against DHL A300 taking off from Baghdad
MANPADS inflicted damage to DHL A300

MANPADS damage on the Airbus A300
Challenges – differences

<table>
<thead>
<tr>
<th>Property</th>
<th>Military</th>
<th>Head-of-state/VIP</th>
<th>Commercial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat</td>
<td>Various, hi-end</td>
<td>MANPADS</td>
<td>MANPADS</td>
</tr>
<tr>
<td>Tactics</td>
<td>Various employed</td>
<td>Limited employment</td>
<td>Not employed</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>High probability low to medium consequence</td>
<td>Low probability medium to high consequence</td>
<td>Low probability high consequence</td>
</tr>
<tr>
<td>Safety requirements</td>
<td>Not low but not prioritized</td>
<td>Very high – civil environment</td>
<td>Very high – civil environment</td>
</tr>
<tr>
<td>Cost</td>
<td>High costs accepted</td>
<td>High costs generally accepted</td>
<td>Airlines have thin margins!</td>
</tr>
<tr>
<td>Tempo of operation</td>
<td>Hundreds of flight hours per annum</td>
<td>Hundreds of flight hours per annum</td>
<td>Thousands of flight hours per annum</td>
</tr>
<tr>
<td>Reliability</td>
<td>Typically hundreds of hours</td>
<td>Typically thousands of hours</td>
<td>Typically thousands of hours</td>
</tr>
<tr>
<td>Operational environment</td>
<td>Extreme</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Exportability</td>
<td>No requirement</td>
<td>May be required</td>
<td>Required</td>
</tr>
<tr>
<td>Support infrastructure</td>
<td>Specialized, mobile</td>
<td>Civil, generic</td>
<td>Civil, generic</td>
</tr>
</tbody>
</table>
Capability

- Capability = tactics + technology
- Only small possibility to employ tactics in civil context;
 - No or small maneuverability
 - No possibility to alter throttle settings
 - Difficult to be unpredictable
 - Difficult to employ spiral takeoffs etc
Counter-MANPADS-systems

- Land based systems – Point defense of airports
 - High energy lasers
 - High power microwave

- Aircraft based systems – Point defense of aircraft
 - Missile detection systems
 - DIRCM
 - CLIRCM
 - Hard kill DIRCM
 - Pyrotechnic flare based systems
 - Pyrophoric flare based systems
Counter-MANPADS-systems

- Land based directed energy systems
 - High power microwave
 - High energy laser
 - Point defense of airports
 - Ground based grid of sensors
 - Ground based grid of directed energy weapons
 - Limited geographic coverage;
 - Footprint of several hundred km²
- Safety issues
Counter-MANPADS-systems

- **Missile Detection Systems**
 - None (or the “old eye-ball”)
 - Pre-emptive dispensing of flares inhibits missile seeker target acquisition
 - Not suitable to civil aviation
 - **Active RF**
 - Measures rough direction, closing speed (Time To Intercept)
 - Sensitive to false alarms in some environments
 - Interoperability concerns
 - **Passive UV**
 - Imaging system measuring UV radiation from missile plume
 - Operates in UV solar blind spectrum
 - False sources include welding, sparks and flashes and some outdoor lamps
 - Measures direction, estimates time to intercept
 - Limited range (enough for MANPADS)
 - **Passive IR**
 - Imaging system measuring IR from missile plume and tracking radome emissions
 - Measures direction, estimates time to intercept
 - Has to cope with massive amount of man-made IR sources
 - **Sensor fusion and processing**
Counter-MANPADS-systems

- **DIRCM**
 - Laser based DIRCM
 - Detection sensors
 - Tracking sensors
 - Turret with laser slewed with tracking sensor data
 - Modulated light induces false steer commands in missile seeker; generic jam code
 - If powerful enough, may cause stray light in seeker
 - Is not a true decoy, i.e. may attract missile under some circumstances
 - Has problems with multiple missile launches due to timing issues
 - Experiences problems with modern missile seekers
 - Technology under ITAR restrictions
Counter-MANPADS-systems

- **CLIRCM**
 - Laser based DIRCM
 - Detection sensors
 - Tracking sensors
 - Turret with laser slewed with tracking sensor data
 - Seeker characteristics measured by laser, e.g. reticle frequency
 - Modulated light induces false steer commands in missile seeker; jamcode adapted to threat
 - Is not a true decoy, i.e. may attract missile under some circumstances
 - Has problems with multiple missile launches due to timing issues; though adapted jam codes may provide quicker jamming sequence
 - Experiences problems with modern missile seekers
 - Technology under ITAR restrictions
Counter-MANPADS-systems

- Hard kill DIRCM
 - Not operational or demonstrated
 - Energy focused by missile optics to detector which pops
 - Not mature
 - Requires lots of power
 - Has to operate in several bands
 - Repeat rate issues
Counter-MANPADS-systems

- Pyrotechnic flare based system
- Legacy military technology
 - Various types of flares exist
 - Adapted to specific threats
 - Spectral characteristics
 - Kinematic characteristics
 - Temporal characteristics
 - Generally employed in “cocktails”
 - Masses typically 0.2-1 kg
 - Ejection velocities typically 10-40 m/s
 - Technology under ITAR restrictions
 - Safety issues
Counter-MANPADS-systems

- Pyrophoric decoy based system
 - Electromechanically dispensed pyrophoric decoys
 - No pyrotechnics
 - Medium temperature area decoy competes with engine signature(s)
 - Very low visual signature and not audible when dispensed
 - Masses in range of 50 g
 - Ejection velocities 2 m/s
 - Safe!