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HALE History
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Year Contractor | Payload Altitude Duration Outcome Additional
Information

1958 General Mills 100 kg 18 — 20 km 8 hours Study only -

1970 Raven nil 20 km 2 hours 1 flight only -

High Platform 2

1976 Martin / 100kg Hangar - - -

HASPA Sheldahl testing only

1982 Lockheed Gross weight | 21 km 30 days No flight 4 piston

Hi-Spot Martin 11.7 tonnes engines

1992 Halrop nil 10,000 feet - 4 short duration

Japan Science flights

Foundation

1995 LTL 600 kg 21 km 5 years

Sky Station telecom No flight

platform

2004 JAXA/ NICT 100kg 13,000ft 5 years 1 flight Severely
underpowered

2011 Lockheed 500kg 21 km 2 hours ‘crashed &

Martin burned’




History of platform development
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Lindstrand Technologies Involvement
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Lindstrand i

Sky Station 1996-1998

Bespoke cell phone station created by General Alexander
Haig

European Space Agency 1998-2000

Development contract in partnership with Daimler-
Chrysler Aerospace

Korber Prize 1999

Yearly award for science and engineering. Shared with
University of Stuttgart

Kawasaki Heavy Industries 2001

Funded by Japanese Science Foundation



Stratospheric flight

Trends in Aeronautics:

m Stratospheric flight offers opportunities nearly as broad as
space flight.

= Today the potential of stratospheric flight is largely
untapped, but in the future they will be complementary
completion to spacecraft in a large variety of applications.

Stratospheric long endurance platforms :

e can be placed within the atmosphere in a geo-synchronous
position.

e areunder research since the late 1950s.

e could now be made simpler, lighter and more reliable because
materials and key systems have been improved since the early
days.

e are now within reach.
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Stratospheric Platform Categories

Aerostatic (vs aerodynamic)
systems:

Batloon Altitude
Record - 55 km

e long term missions
(mission duration
measured in months
or years)

Non-Air
Breathing
Airplane
Limit

e payload capability
o safety

Loiter Altitude (km)

e geo-stationary
positioning

20

e wind sensitivity
e new infrastructure

. Theoretical
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Stratospheric Platform Characteristics
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Communications

Fraunhofer Gesellschaft, Erlangen, Germany

Services:
e Cellular phone (S-UMTS)
e Metropolitan Area Network
e Remote Monitoring
e Passenger Information System

e Digital Broadcast

Mission requirements:
e High availability
e High reliability
e Station keeping

e Long term missions (5 years)

= Very high commercial potential
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Remote Sensing
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Remote Sensing Research Group,
DLR - Adlershof, Germany
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Science - Astronomy

Institute of Astronomy,
Ruhr-Universitat, Bochum, Germany

= Research areas:
e Infrared (IR)-observation
e Far-Infrared (FIR)-observation
e Pre-cursor mission for a stratospheric observatory

= Mission requirements:
e Payload mass at least 1.000 kg for a 1.5 m telescope
e Long term missions
e More floating than geo-stationary positioning

= Expected results:
e Comparable with a 2.5 m airborne telescope (SOFIA)
e Comparable with HST
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Environmental conditions - stratospheric winds
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Wind conditions at 50 hPa pressure layer in summer
(June, July, August) 1983-1995

average wind speed (m/s) max. wind speed (m/s)




Environmental conditions - stratospheric winds
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Wind conditions at 50 hPa pressure layer in winter (Dec, Jan, Feb) 1983-1995

average wind speed (m/s) max. wind speed (m/s)



Environmental conditions - vertical wind profiles
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Current Platform Design - European ESA-HALE concept
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Design
e Non-rigid structure
e stern propeller gimballed
e DC-Engine brushless
e Thin-film solar cells
e regenerative fuel cell

Performance
e Altitude: 21,000 m
e Speed: 25m/s
e Mass payload: 1,000 kg
e Energy payload: 10 kW

System characteristics

e Length: 220m

e Diameter: 55m

e Mass total: 20,800 kg
e Volume: 320,000 m3

e Propulsion: 90 kW




Development concept
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Evolutionary approach
e First demonstrator (D15)
e Second demonstrator (D20)
e Pre-Series

Risk reduction
e Staggered approach
e Clear defined functionality for demonstrators D15, D20 and Pre-Series
e Use of state-of-the-art technology




Development concept - HALE cornerstone missions
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1. Demonstrator D15 2. Demonstrator D20 Pre-series PS

(principle) (capability) (functionality)
Objectives - inflation high-accurate system operations
- transit station keeping testing, production,
- demonstration long term machinery
station keeping operations ground
- flight time 72h + high altitude infrastructure
- medium altitude recovery of key service reliability
- P/Lrecovery system & P/L recovery procedure
What to - aerodynamic and recovery strategies manufacturing
learn? flight mechanics payload flying optimization
data parameters cost reduction
- environmental reference
conditions (wind applications
speed, - direction,
forecast, accuracy
- superpressure/
superheating
- structural loads
Focus platform payload services



Development concept - schedule & technologies
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Kiruna Kiruna/ Kourou/ Existing airship
Sardinia hangar/ dockyard
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Development concept - platform parameters
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volume length | massg, mass,
i S D15 16.000 m3| 80m 2.700 kg 100 kg
- D20 180.000 m3| 180 m 12.600 kg 500 kg
’. PS 320.000 m3| 220 m 20.800 kg | 1.000 kg
&series

+ technology research




Industrial Initiative

With Astrium GmbH (former DaimlerChrysler
Aerospace) and Lindstrand Technologies Ltd.

ateam has been established which:

covers all aspects of stratospheric
aerostatic platforms from design and
manufacturing up to operations.

accepts the global challenges and
intends to become one of the world‘s leading
providers of stratospheric aerostatic
platforms

believes in the success of
stratospheric platforms.
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The vision

Source: Eriksson Microwave Systems, Stockholm

We assume the HALE payload being capable of handling
50,000 simultaneous phone calls.

Typically, in a larger city each subscriber during daytime
0.05 Erlang, l.e. will use the telephone for 20% of the time.

This translates into 50,000/0.05 = 100,000,000 which is the
total number of subscribers the HALE airship can service.

If we assume each subscriber will phone for £1.20 (the
average mobile user in Stockholm) per day one airship will
generate 1,000,000 x £1.20 = £1.2M per day in trafficincome
and per year 365 x £1.2M = £438M.
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— General Overview

— Aerodynamic Layout
— Lift Control

— Electrical Layout

— Power Management
— Operations

— Regulatory Issues



Atmospheric conditions at 20km altitude

Pressure 50mbar
Temperature -56°C
Atmospheric density 0.088 kg/m?3
Gas expansion 13.8

Helium lift 0.076 kg/m?3
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Operational States
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Flight Controls
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Control Surfaces for long-term flight control (dynamic lift, orientation towards sun)
Three-axis-control (roll for solar power optimisation)

Gimballed, feathered propeller for short-term flight control

Envelope pressurised during ascent

Controlled expansion of gas via special designed diaphragm

On lift off the envelope contains less than 10% of helium gas

Pressurisation during descent defined max. sink speed



Operational Phases
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These data define the g
operational data for D- b=
20. Design data g " 2
including safety margins S E £
end to have larger g E = b
igures. B e 5 3
Operational Limits
max. horizontal speed  positive: stream m/s NA
(IAS) from front
min. horizontal speed positive: stream m/s NA
(1AS) from front
vertical speed range positive: ascent m/s NA
Altitude (reference: CR m NA
{centre of
reference))
min. altitude accuracy  (goal m NA
min/ max. attitude (&)  positive: nose ° -10/10
up
min/max pitch (AQA) positive: nose  ° 0
up
max. pitch rate °/sec 10
max. yaw angle (side slip angle) ° 10/10
max. yaw rate *fsec 10
max. roll angle {bank angle) ° 120
max. roll rate °fsec 10
max. gas temperature  TBD K 10
difference
max. static heaviness % of total mass 100
m ax static lightness % of total mass 100
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Environmental Limits
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preliminary environmental conditions o
f o £ =
5 e = =
£ 85 5 £ 2 £
n o £ 2 E B [=% @A wn
e 285 =i a fa] a
max. ambient air °C 25 -40 -40 -40 35 35
temperature
min. ambient air °C 10 65 -65 -65 5 5
temperature
max. steady wind speed mis 2 10 15 15 10 5
horizontal
max. up & down draft mi/s il 2 8 2 2 2
3sec
3 min m/s il 2 5 2 2 2
max. allowed thermal (weak <1m/s CHAR weak weak weak weak weak weak
effects vertical wind
speed,
moderate
humidity range OTTUS, STTONg of, rel 0. 80 0..20 0. 20 0..20 0..80 0 .. 80
dynamic stability of the (stable, CHAR NA stable stable stable stable stable
atmosphere unstable)
lightning conditions TBD CHAR no no no no no no
rain (light, medium, CHAR no no no no no no
heavy)
hail TBD CHAR no no no no no no
extreme gusts CHAR no no no no no no
microburst CHAR no no no no no no
extreme up / down drafts CHAR no no no no no no
extreme turbulences CHAR no no no no no no
extreme wind shear TBD CHAR no A no no no no no
fwet snow CHAR no m@gmgﬁg@ﬁﬁm no no no no no
hoar frost CHAR no e no ho ho ho no
extreme pressure CHAR no no no no no no
gradient
extreme sudden 10K/min CHAR no no no no no no
temperature changes
sand CHAR no no no no no no
corrosion CHAR no no no no no no
EMC conditions CHAR no no no no no no
icing conditions (light, CHAR no no no no no no
moderate,
heavy)
min. ambient air densitiy ISA +°C 10 20 20 20 20 20
max. ambient air densitiy ISA -°C 5 10 10 10 10 10
IMC CHAR NA ho ho ho ho ho
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L

‘Flight Box’

500 ft

+/

Vertical:

Horizontal:

+/- 1500 m

Lateral:

+/- 1500 m

Longitudinal:




Layout Airship

Lindstrand b

inverted Y-tail
non-rigid envelope solar generator control
for day operation surfaces

Power Storage gimballed
and Power Conditioning Tx/ Rx Payload stern propeller



Technical Realization
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Envelope: LTL design, based on 20 years of experience
Propeller: Efficiency-optimised design, two-bladed (University of Delft)
Motor: Efficiency and Reliability driven, direct drive for propeller
o EC-motor with rare-earth magnets, external rotor (University of Biel)

Rigid fins with control surfaces

Thin-film solar cells on polymer substrate

COTS electrolyser, weight-reduced and adapted for operational conditions

PEM fuel cell



Main Dimensions
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< 158 >
«—19
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< 89 > o ©
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) C.V.
c.g.
c.g. power storage syst. c.g. PIL
4 + 4
< 71 >
< 81 >
<t 24 >|
Volume: 181200 m?®
Hull Surface: 20750 m?
Fin Area: 324 m? each
< 203 >



Weight Status
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Status: 13968|kg |
Cormnotant SiZe soecific waight Mass
lerivelope 20752 m* 0,3} keyrn® 6226]kg |
diaphragm 10376]m® 0,05]keyrn? 518|kg |
ins 97 1| m? 2.00]koyim? 194 10ky
|
Iprupulsur S kMY ALk kWY S22 0k
salar array 3200]m? 0,25 ko 500fkg |
fuel cell 120 kMY 2 2 kg h o029k
lelectrolyser Te0[KW i R EED [
total gas storage 1.8]nights
Ihvdrogen storage 10k
loxyoen storage 4870 ka
|
|
ower distribution E{HIH] [w
systems and installations 500fkg
|
layioad 500fko




Aerodynamic Layout
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- Based on NASA I-YT design (Mc Lemore)
- Confirmed data for lift, drag and pitch
- Wind tunnel data for pusher propeller

- Propulsive efficiency data



Drag Coefficient
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Drag Components

Drag Components

Others
Interference 7%
7%
Fin Supensions
3%

Total Drag Coefficient: 0.026
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Envelope
66%



Aerostatic Layout
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Lift Variation:
= Regenerative fuel, gaseous storage: 13000 N (max. buoyancy + weight of burned fuel)
m Gas superheating without counteracting: 30K = 20000 N
= Night cold soak: 20K = 13000 N
= Total lift control demand: 40000 N max.
= Note: max. lift demands (fuel, heat, cool) do not occur simultaneausly

Compensation:

= Convective heating/ cooling: fly faster than wind speed requires
= limits superheat to 15K max. = 10000 N
= limits cold soak to 10K max. = 6500 N
m Superpressure: Limit excess lift by increased gas pressure
= Lifting gas: compensates remaining superheat (Ap = 520 Pa)
= Regenerative fuel gas: limits excess lift at evening (Ap = 520 Pa)

= Dynamic lift: +/- 7000 N (=+/- 5% of total lift) for remaining lift variation



Dynamic Lift Performance/ Power Demand
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18% 250

16%

14% 200
=
3 429 g
© =
g 150 o
F 0% 4 £
= =
.| D
o 8% o
E / 1100 3
a /J Sprint Speed o

N\

4% ------------------------------------------------------ T 50
20 D-20 Design Point
0% —de_---

0 5 10 15 20 25 30
Speed [m/s]




Speed Limits
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Electrical Arrangement (1/2)

LlndstrandW

TECMHNOLDUGII E S

Rudder
Actuator

View from Port

ngine
Engine Control
Gimbal
Legther Control

Sys - pa
Power bt tems |l P/L

Port
Data Collection Elevator
Flight Systems Actuator

@ Antenna Power Conditioning

2 Flight-important Sensors (Air Data, Navigation, Gas MGT, ..)
<= Data Acquisition Sensors

= Power Lines
Signal Lines

Port
Elevator
Actuator

Engine
Engine Control
Gimbal
Feather Control

H EEE N EEN I BEN R = N PD

Elevator

View from Bottom Actuator



Electrical Arrangement (2/2)
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Power Management System Architecture
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Regenerative Fuel System Layout
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Energy Balance
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fthrust power a1k night duration 121hrs
day duration 121hrs
ropeller eff. 7%
Ernpeller input A1 kWY stored energy amaount 1338 [kYVh

A5 power density 3dkvhikg
Enging eff. {incl. 90§ %

Itransrnissiun |055E5] reguired hyvdrogen mass A1 |k

lencine input ala] [ required Oyoen mass J24 kg

SyVSLEmM S power ] L

[Pavioad power ] Ll electrolyser efficiency Fal%
max. electrolyser input 149 kWY

(o ower input s [

Fansmission 10535es 101 %
fruel cell efficiency a0 % solar cell output 184 kWY
Irnax. fuel cell input 11 2 kWY cell efficiency =]

incidence losses 20[%

solar radiation 1000 fwsm?

solar cell area 2875 %




Data Handling Systems Architecture
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Fabric Choices
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Vectran® is a high-performance multifilament yarn spun from liquid crystal polymer (LCP).
Vectran® is the only commercially available melt spun LCP fiber in the world.
Vectran® fibre exhibits exceptional strength and rigidity.

Pound for pound Vectran® fibre is five times stronger than steel and ten times stronger than
aluminum.

These unique properties characterize Vectran®:

High strength and modulus Excellent creep resistance

High abrasion resistance Excellent flex/fold characteristics
Minimal moisture absorption Excellent chemical resistance
High dielectric strength Outstanding cut resistance

Low coefficient of thermal expansion (CTE)

Excellent property retention at high/low temperatures
Outstanding vibration damping characteristics

High impact resistance

Vectran’s major drawback is that it costs 3 times more than Kevlar.



Vectran Applications
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Air Cell buildings
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~ Vectran Weave
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Properties of Vectran Fabric
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Weight & Guage
300
200 = = —4
100
0 |
1 2 3
w—p N @it | 250.70 | 272.60 l 284,90
.—.—Guage | 221 [ 213 ' 207

Tensile strength
600

500
400
300
200
100

0

e \N 21 P 431.05 437.33 31072 305.96 267.98
vl e ft 530.59 355.65 305.17 306,53 251.4%




Double tongue tear strength (Max)
60
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-
o Lindstrand i
o Indstran
20 TEGHNI:II.I:IBIES.
10
0
50 20 0 &0 100
[ ——tarp | 2290 [ 56.15 [ 50.84 | 37,70 1344
==t 15.43 63.18 S0L20 34,10 11.95
Leakage after mechanical damage
0.80 - -
0.70 |
0.60 -
050 |
0.40 |-
0.30 ‘
0.20 "
0.10 {
0.00 - - - — - —
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Adhesive peel

Lindstra ndN\!ﬂ

TECMHNOLDOGI E 8

30
25
20 |
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10 |
\
0 | 2 3
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Airship Fabric
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ENVELOPE SKIN
LAMINATE CONSTRUCTION

Polycarbonate/
Polyurethane film

PVDC film

Polyurethane
coating

Vectran fibre matrix




Regulatory Issues

Certification Standards for Airships:
= Current standard — BCAR Section Q
= Soon to be replaced with EASA CS 30 N

Flight Rules:
= VFR - IFR

Traffic Priority:
= Airships have right of way against all other traffic

= No need for see and avoid capability
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Budget
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ITEM VALUE UNIT COST TOTAL
Envelope 20,000m? $250/ m? $5 million
Fins 1,000kg $1000/ kg $1 million
Flight Controls Unit - $1.5 million
Propulsion 46kW $50,000/ kW $2.3 million
Solar Array 300kwW $10,000/ kW $3 million
Fuel Cell 150kW $30,000/kW $4.5 million
Electrolyser 180kW $15,000/ kW $2.7 million
SUB TOTAL $20 million
Flight Operations Package
System Integration Package $2 million
Ground Support Package
Programme Management Package
GRAND TOTAL $22 million




Conclusion
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D-20 Design existent:

- Aerodynamic

- Aerostatic

- Propulsion & Power Management
- Structural Concept

- Operations

- System Requirements and Specs

Usage of mature technologies

Risk minimisation
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PRODUCTION PROCESSES
AND TECHNOLOGY



Fabric Inspection
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Fabric Inspection is a key tool in determining the
quality of the fabric supplied to Lindstrand
Technologies.

Material is loaded onto a roller system that unwinds
the fabric and passes it across the inspection table.
The table has the facility to back light or top light
the fabric. Fault diagnostics are recorded directly
onto the integrally mounted computer. The
inspection logs form critical data in subsequent
project files as the material is consumed in the
manufacture of company products. The final stage
on the inspection table is to automatically re-roll
the fabric for ease of handling.



Fabric Cutting
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There are 2 cutting tables at Lindstrand Factory.

Both have operating length of 21m, width of 1.8m
and 3m. Machines can cut at approximately 60m/min
and have a cutting accuracy of +/- 0.2mm.

They are both capable of working with a wide variety
of fabrics including PU’s, PVC and the more exotic
Kevlar and Vectran.




Helium Leakage Testing
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This is a unique testing machine purpose
built by Lindstrand.

It is based on a mass spectrometer. The
underside of a fabric sample is pumped
down to near vacuum. Helium is then
injected on top of the sample, and any
penetration is picked up by the mass
spectrometer.

This machine can carry out a full helium
leakage test in less than 14 seconds.




Fabric Welding
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High Frequency Welder:

High frequency welding is performed by 2
Fiab machines. The original machine has a
moving table and the new gantry mounted
machine allows for all manufacturing angles.

Hot Air Welder:

Hot air welding is currently the main method
of joining materials in the production
environment. Three purpose built welding
machines are used on site. Each machines
jets hot air onto the joining surfaces of the
fabric with an operating temperature of
between 200C°-650C° which are then pressed
together at 7 bar.



Fabric Welding
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Hot Wedge Welder

A hot metal wedge radiate the heat into the
fabric which is then pressed together by two
rollers. This is a self propelled machine but can
only be used for straight runs.

Ultrasonic Welder

This is a hand operated machine that is used
primarily for repair work. It operates at 36kHz
and is also used for reactivation of sheet
adhesives.



Laser Welding
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900 nm wavelength



