

MID-AIR COLLISION AVOIDANCE FOR RPAS – FINDINGS FROM MIDCAS*

Aerospace technology congress 2016 11 October 13:00-13:30 Session A1

Bengt-Göran Sundqvist, Saab Aeronautics

*Funded by EDA/FMV

This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

DISPOSITION

- Background
 - Mid-Air Collision
 - Airspace classes
- MIDCAS
- Standardization material (OSED, SPR, INTEROP, MASPS, MOPS)
 - Operational scenario
 - Interoperability
 - Safety and Performance requirements
- System requirements and design
 - Traffic Avoidance (Remaining Well-Clear)
 - Collision Avoidance
- Summary

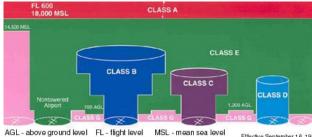
1996 Combat training

2002 Überlingen

2006 South America

2004 LUNA (UAV) over Afghanistan

AIRSPACE CLASSES (ICAO ANNEX 11)

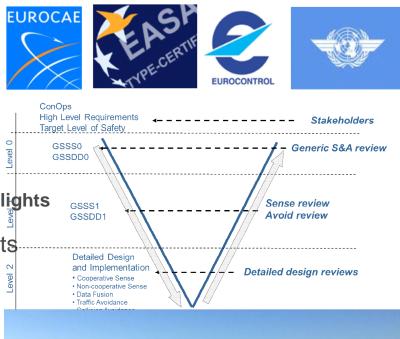

	Class	Type of flight	Separation Provided	Service Provided	Radio comm. requirement	Subject to ATC clearence
Γ	A	IFR only	All aircraft	Air traffic control service	Continous two-way	Yes
		IFR	All aircraft	Air traffic control service	Continous two-way	Yes
	В	VFR	All aircraft	Air traffic control service	Continous two-way	Yes
		IFR	IFR from IFR IFR from VFR	Air traffic control service	Continous two-way	Yes
Controlled Airspace	с	VFR	VFR from IFR	 Air traffic control service for separation from IFR; VFR/VFR traffic information (and traffic avoidance advice on request) 	Continous two-way	Yes
Airs	D	IFR	IFR from IFR	Air traffic control service, traffic information about VFR flights (and traffic avoidance advice on request)	Continous two-way	Yes
		VFR	Nil	IFR/VFR and VFR/VFR traffic information (and traffic avoidance advice on request)	Continous two-way	Yes
	E	IFR	IFR from IFR	Air traffic control service and as far as practical traffic information about VFR flights	Continous two-way	Yes
	-	VFR	Nil	Traffic information as far as practical	No	No
Airspace	F	IFR	IFR from IFR as far as practical	Air traffic Advisory service; flight information service	Continous two-way	Νο
Airspace		VFR	Nil	Flight information service	No	No
irs	G	IFR	Nil	Flight information service	Continous two-way	No
> <		VFR	Nil	Flight information service	No	No

AIRSPACES **IN EUROPE**

FL o Ba	nd l	Abania	Ameria	Austria	Apphalian	Belgium/	Bosnia Hizina	Bulgaria	Croatia	Cyprus	Czech Rep	Denmark:	Estonia	Finland ₅
	a cas	6460	400	660		860	410	665	1.361.07	460	060	460	660	665
246-4 205-2 195-2	45	¢	c	¢		¢	_	c			с	c		¢
150-1	150			D		в	c		c			E	c	D
95*-12 3K*-08 SFC-5	5*	8	o			0	0	6 G	D		0 6 0	0	0	0
Major Minor	TNA TNA	c		CDE		ta .	E,		<u>ç</u> 0	No TMAs	<u>с</u> 0	<u>с</u> 0	e D	C D
CTAR	weby:		с			8 0	C above 100	¢	C D	200 4010 195	C D	E	CD	D
CIR		0		0 0		C	D		0	ATZ C	0	0 0*	CD	C D

FL or Alt Band	France/ Monaco	FYROM	Germany	Georgia	Greece	Hungary	irel and	Esty	Labia	Lithuania	Mata	Moldeva	Netherlands
Up Land CAS	6.60	0.00	1000	460		660	66.0	460	4602	660	460	660	660
245-460 205-245 195-205	с	с	с					с	\$850.295	_	с		с
150-195 130*-150 95*-130*	D	D	CE	с		c	c	a	c	¢	6 C	с	а в
3K*-95* SFC-3K*	0	é G	G	6		G	9	, in the second s	ø	6		6	G
Major TMA Ninor TMA CTAMMy CTR ⁴		3 3 3 0		с		с	с		c	C D D C D	с	с	

AIRSPACE IN US

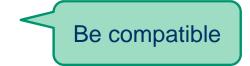


FL or Alt Band	Norway	Poland	Portugal	Romania	Slovak Rep	Slovenia	Spain	Sweden	Switzerland	Turkey	Ukraine	UK	Serika-8. Monteniegro
Up Limit CAS	660	460	1.34.07	650	860	660	460	480	680		660	660	033
245-480 205-245 195-205	¢		с			с	с		с			c	с
150-195 130*-150 95*-130*	0 0	c	6	G	c	D	G	c c o			с	6	
3K*-95* SFC-3K*	6	8	_		0	F G		6	E O		D G		
Major TNA Minor TNA CTA/May CTR*	C D D	с	с	A	C D E	C D		с					

Effective September 16, 1993

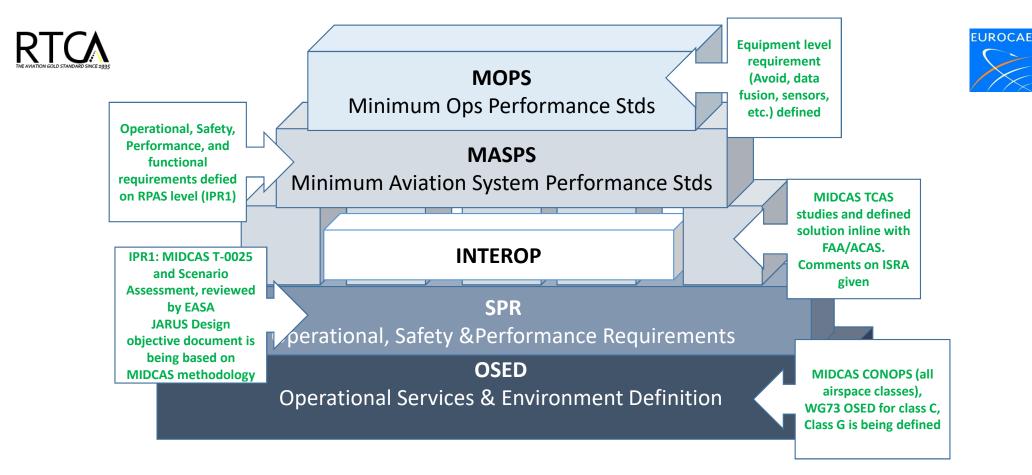
MIDCAS

- 5 nations (Sweden, France, Germany, Italy, Spain)
- 11 industries, consensus decision model
- 5 year program designed with focus on 3 main tracks :
 - Progress on Standards for D&A
 - Design of a Generic D&A function to be tested in simulations
 - Design of a D&A Demonstrator to be tested in Manned and RPAS flights
- Incremental System engineering approach; with 4 increments
- SCOPE
 - Remotely Piloted Aircraft (Not autonomous)
 - Operated according to Instrument Flight Rules
 - during enroute flight (include climb, descent and turning).
 - above 3000ft with respect to ground
 - with maximum take off weight > 150 kg

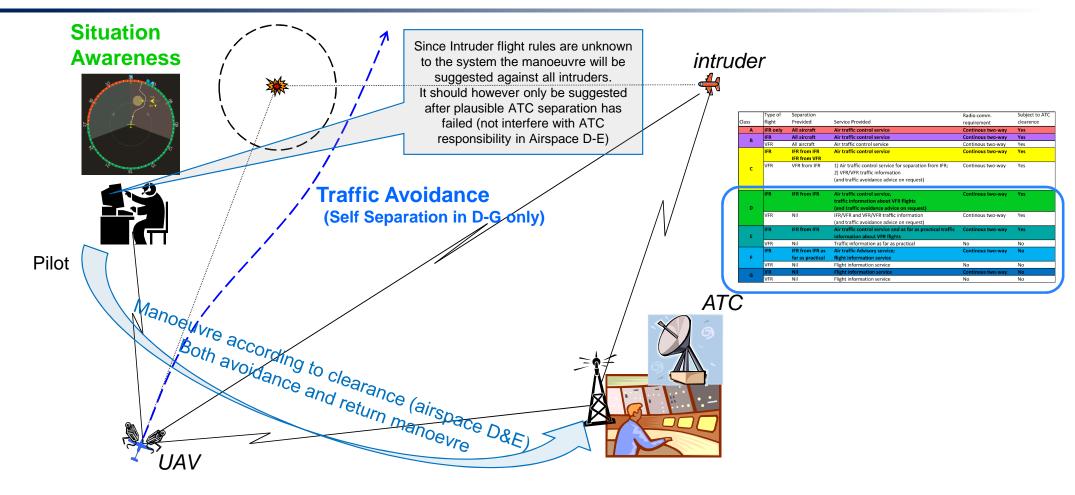


MIDCAS MAIN requirements

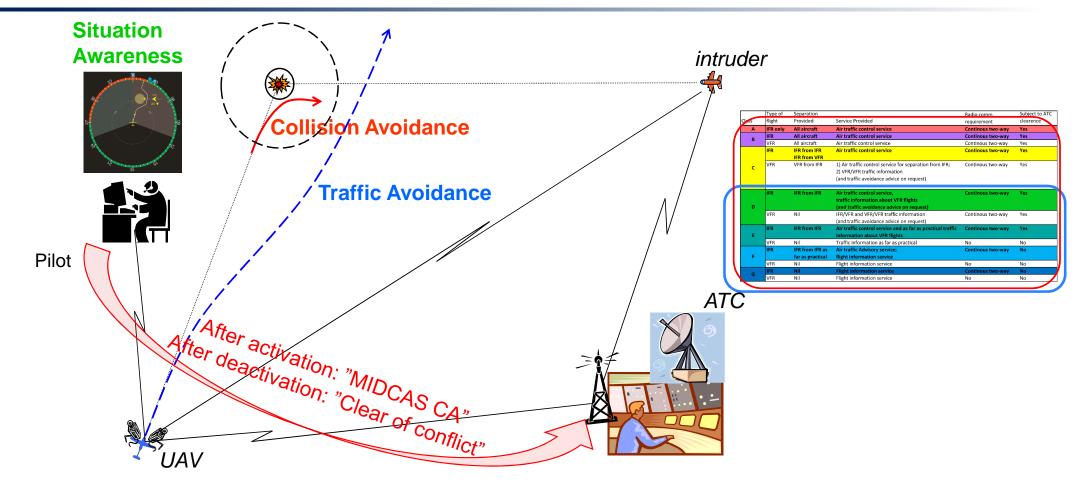
- The resulting Mid-Air collisions shall be ≤ 1e-9 /fh vs. large aeroplanes and ≤ 1e-7 /fh vs. large aeroplanes and ≤ 1e-7 /fh vs.
- Shall NOT impair safety of other airspace users.
- Shall be nuisance free:
 - Unjustified manoeuvre suggestions to remote pilot \leq 0.5/fh.
 - Unjustified manoeuvres leading to ATC workload \leq 1e-3/fh.
 - Unjustified manoeuvres potentially resulting in MAC is included in TLS
- Should minimise the impact on existing ATM. Impacts on controller workload and required updates of clearances shall be minimised.
- Compatible with ACAS.
- Auto-compatible (D&A equipped RPAS vs D&A equipped RPAS).
- Compatible with existing airspace rules
- Reduce the risk of collision with non-cooperative intruders.



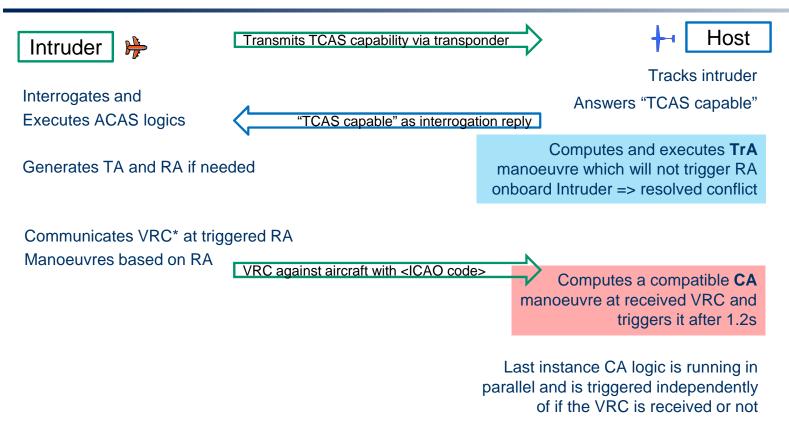
Exact semantics see the High Level Requirements of MIDCAS


SAAB

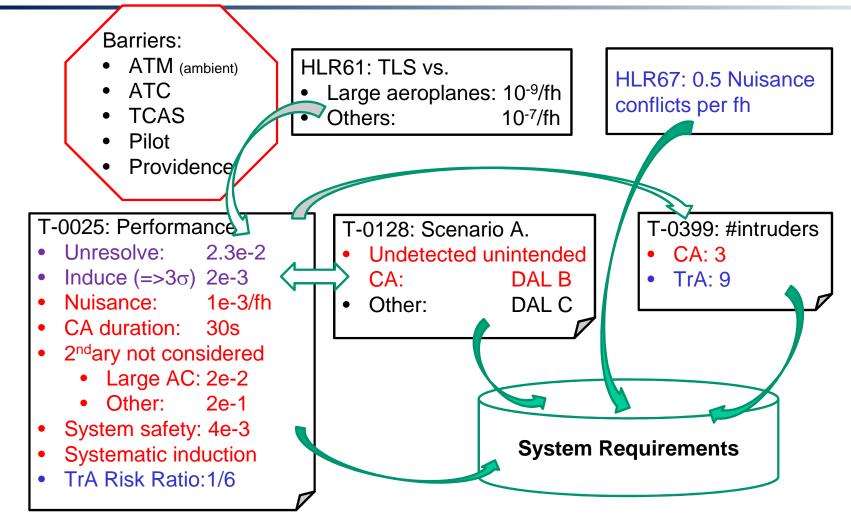
STANDARDS WITH OPERATIONAL CONTEXT MIDCAS APPLICABLE


Inter Special Committee Requirements Agreement: "MASPS for Interoperability of ACAS", Oct 2015 issue

OPERATIONAL CONCEPT (DEPENDENCE ON AIRSPACE CLASS)



OPERATIONAL CONCEPT (SUMMARIZED)



Interoperability against TCAS equipped intruders

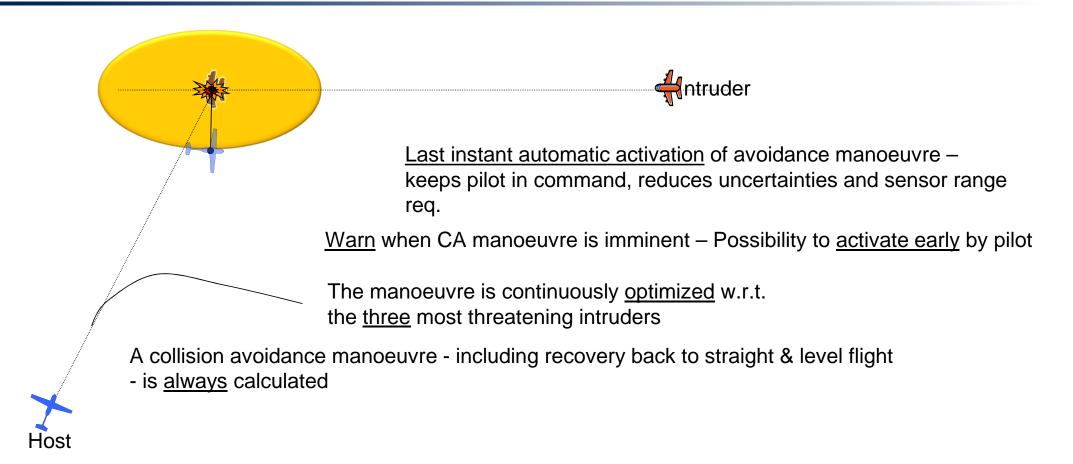
*Vertical Resolution Compliment (Inverse of own manoeuvre direction)

Safety and performance; Target level of safety / Nuisance

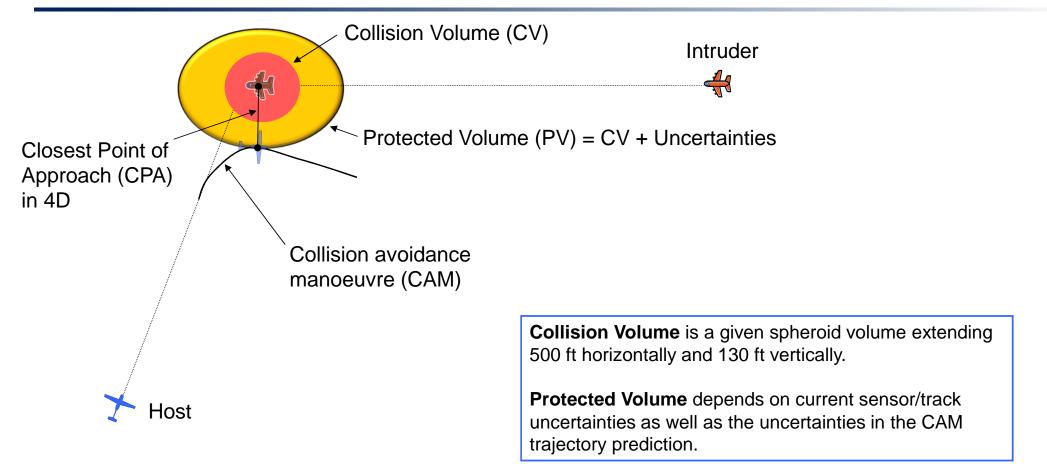
TRAFFIC AVOIDANCE (SELF SEPARATION)

- Objective: "not scaring other":
 - Clearing SEP minima (0.5NM horizontally/500ft vertically distance from AC) or
 - not triggering RA (for TCAS equipped intruder).
 - Provide warning to the pilot of predicted breach
 - Providing trajectory/manoeuvre to pilot with ability to activate semi automatic manoeuvre.
 - "Clear of Traffic" is issued when return to original track would not violate the objective.
 - Pilot assess violation of flight clearance
- Uses path planning technique with constraints to find best solution, Constraints:
 - Normal performance: 3deg/s turns, low climb/descend
 - Complies with the Rules of the Air (using geometry, ADS-B information or pilot input)
 - Considers up to 15 simultaneous intruders
 - Avoidance trajectory in one dimension, {Heading or Flight Level or speed}

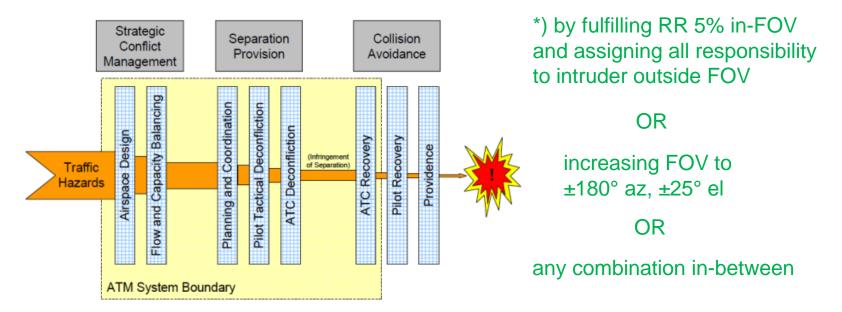
COLLISION AVOIDANCE


Objective "not scraping paint":

- Clearing the Collision Volume (500ft horizontal/130ft vertical radii from AC)
- Automatic last instance manoeuvre
- Knowledge of RA on TCAS intruder results in compatible manoeuvre and automatic triggering.
- CA Alert to pilot ~10seconds before automatic manoeuvre is performed
 - Disables any TrA trajectory indication.
 - Enables Pilot to activate manoeuvre early
- Post activation: straight and level flight; then hand over to flight management system


Features:

- Pilot ability to inhibit/abort manoeuvre at available link
- Automatic (not constrained by link delay or failure) activation at **last instance** when a safe manoeuvre can be performed given current performance.
- Uses aircraft specific **performance model** to ensure that the UAS can follow the trajectory.
- Prefer right bound manoeuvre if intruder to the right or in front sector to consider **rules of the air**
- **Direction allowed to change** during ongoing manoeuvre (taking into account change in scenario)
- Considers 3 simultaneous threatening aircraft
- **Minimizing nuisance** activations (Late activations, High performance) compliant with manned.
- Meeting the objective including considering 3sigma uncertainties {sensing, manoeuvring, computational}


CA Concept - illustrated

CA CONCEPT - TERMS & DEFINITIONS

MONTE-CARLO SIMULATION RESULT (POST ANALYSIS)

Function	RR vs Coop	RR vs Non-Coop	Nuisance
Collision Avoidance	< 1%	< 10%	< 0.001 / fh
	Feasible	Feasible *	Feasible
Traffic Avoidance	< 16%	< 16%	< 0.5 / fh
	Feasible	Feasible, within FOV	Not assessed

DONE, DEFINED & DEMONSTRATED

System Engineering

- Identification of main D&A functions
 - Support Situation Awareness
 - Provide Traffic Avoidance
 - Provide Collision Avoidance
 - Inform RP about S&A
- Allocation of requirements incl. performance to subsystems
- Definition of feasible non-cooperative / cooperative sensors requirements and design
- Investigation of needs for Situation Awareness wrt D&A
- Definition and validation of ACAS compatibility principles
- Definition of acceptable and feasible safety requirements
- Developed SW for Avoid, Fusion, IM, HMI and sensor models

Simulation

- Validation of CA and TRA design and performances
- Validation and acceptability of CONOPS
- Validation of ACAS compatibility

Flight Demonstrations

- Support Sensors, data fusion and Avoid development
- Demonstrate CA and TRA feasibility in real conditions