
Formal Modeling of Run-Time Reconfigurable SoCs for
Fault Tolerance Avionics Applications

Daniel M. Muñoz1 Gilmar S. Beserra1 Ingemar Söderquist2

Ingo Sander3

1Electronics Engineering Program, Faculty of Gama
University of Brasilia, Brasilia, DF, Brazil

2Saab AB, Linköping, Sweden

3School of Information and Communication Technology
KTH Royal Institute of Technology, Stockholm, Sweden

Aerospace Technology Congress 2016

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 1 / 31

Research Question

In order to deal with the increasing complexity of modern safety-critical
embedded systems and SoCs, it is important to know:
→ How modeling methodologies can enable the designer to express the

behavior of heterogeneous systems at a high level of abstraction?
→ How high level modeling methodologies can be used to design

fault-tolerant solutions?
→ How run-time reconfiguration can be integrated to fault-tolerant

strategies in a high level of abstraction?
→ How to automate this design process?

Feasible solutions should naturally lead to:
→ Faithfully generate self-adaptive fault-tolerant implementations of

heterogeneous systems in software and digital hardware.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 2 / 31

Hardware Redundancy

Triple Modular Redundancy (TMR)
Can detect and mask only one fault.

output

Module 1

Module 2

Module 3

Voter

N Modular Redundancy (NMR)
Can detect and mask bN/2c faults.

output

Module 1

Module 2

Module N

Voter

...

RTMR = 3R2 − 2R3 (1) RNRM =
2n+1∑

i=n+1

(2n + 1
i
)

R i (1 − R)2n+1−i (2)

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 3 / 31

Redundancy Allocation

Redundant modules must be allocated in a proper way.

Multiple Stage Redundancy
The replication takes place at component level. For independent
component failures the multiple stage yields a higher redundancy than
high-level redundancy.

In
p

u
t

O
u

tp
u

t

P11

P12

P13

V1

P21

P22

P23

P24

P25

P26

P27

Vn...

P31

P32

P33

P34

P35

V2

Process 2

Process 1

Process n

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 4 / 31

ForSyDe (Formal System Design)

ForSyDe is a system design methodology that models systems at a
high-level of abstraction. It is based on:

Theory of models of computations (MoCs)
Functional programming paradigm

This approach allows for:
Modeling Heterogeneous embedded systems
Composition of heterogeneous models
Modeling adaptive and reconfigurable systems at high-level
Formal analysis and synthesis techniques by well-defined
transformations

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 5 / 31

ForSyDe (Formal System Design)
System Model

A system is modeled as concurrent process network
Processes belonging to different models of computation communicate
via MoC interfaces
ForSyDe libraries in Haskell and SystemC to support the designer to
create a formal model and exist for several MoCs

I e.g. synchronous MoC, continuous time MoC, SDF MoC

A
B

A
B

P1

P3

P2 P4

P5

MoC B

MoC A

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 6 / 31

General Adaptive Design Methodology

P1

P3

P2

P4

P5

Model of Adaptive System
• Formal Base (MoCs)
• Executable
• Analyzable

RTR Target Architectue
• Multiprocessor
• RTR Areas + Customizable HW
• Predictable Performance?

Design Constraints
• Real-Time
• Power Efficiency
• Fault-Tolerance
• Robustness
• Safety
• ...

Design Space Exploration
• Analytical
• Simulation-based (VPs)

Objective:
Find a mapping that

satisfies design
constraints

Synthesis
and

Compilation

Implementation
• Customized HW
• Efficient SW

CPU
1

M
(local)

Communication
Network

CPU
N

M
(local)

M
(shared)

Mapping and Schedule

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 7 / 31

Proposed FT Design Methodology

 circuit

Target architectureTarget architecture

p
1

p
2

p
3

Analyzable MoC-based
high-level model

Intermediate
representation (XML)

Intermediate
representation (XML)

Introspection

IP-core repositoryIP-core repository

Pick IP
+ X sin √

Non fault-tolerant modelNon fault-tolerant model

Bio-inspired
fault-tolerance
optimization

Fault-tolerant modelFault-tolerant model

+++ ++X

p
4

++-

process network Cost and failure rate
of each component

SEU
calculator

HW
costReplace IP

VHDL code generator

VHDL code generator

spec: R(t),
FIT, constraints

Implemen-
tation

Logic
synthesis

and
mapping

Based on the
semi-formal
refinement-by-
replacement
methodology. Blue
rectangles represent
high-level models and
green ones the
fault-tolerant models.
Gray boxes are
activities for design
transformations or
characterization.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 8 / 31

Case Study: Pitch Control System

In this case study the objective is to design a fault-tolerant autopilot that
controls the pitch angle θ of an aircraft.

Basic coordinate axes and forces acting on an aircraft. The input is the elevator deflection angle
δ and the output is the pitch angle θ of the aircraft. 1

1Case study obtained from Control Tutorials for Matlab and Simulink,
http://ctms.engin.umich.edu/CTMS/

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 9 / 31

Case Study: Pitch Control System

- PID
Controller

Plant
State-
space

Sensor
H=1

 θ
desired

error θδ

Loop control for modeling the autopilot that controls the pitch of the
aircraft. Gray boxes represent the aircraft. Blue boxes will be
implemented in a digital circuit with fault-tolerance capabilities.
A fault-tolerant model of the Proportional Integral Derivative (PID)
controller must be automatically obtained and tested on a Zynq
FPGA device.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 10 / 31

Case Study: Plant Model
Assuming simplifications that the aircraft is in steady-cruise at constant
altitude and velocity and that equations governing the motion are
decoupled and linearized.

Pitch Formulation for a Boeing’s aircraft
α̇ = −0.313α + 56.7q + 0.232δ
q̇ = −0.0139α− 0.426q + 0.0203δ
θ̇ = 56.7q

(3)

 α̇
q̇
θ̇

 =

A︷ ︸︸ ︷ −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0


 α

q
θ

+

B︷ ︸︸ ︷ 0.232
0.0203

0

 [δ] (4)

y =
[

0 0 1
]

︸ ︷︷ ︸
C

 α
q
θ

+
[

0
]

︸ ︷︷ ︸
D

[δ] (5)

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 11 / 31

1) ForSyDe Implementation of the Overall System

ForSyDe implementation using process constructors.

mapSY

[A][
α
q
θ]

mapSY

[B]δ

zipWithSY

zipWithV

+

δ [
α̇
q̇
θ̇] mapSY

mapV

*ΔT

scanldSY

zipWithV

+

[
α
q
θ] mapSY

[C][
α
q
θ]

mapSY

[D] δ

ZipWithSY

+

θ
mealySY

PID

0.0

state PID

0.0
0.0
0.0

ZipWithSY

-

Euler integration

 θ
desired

delaySY

0.0

error

PID Controller

Sensor
Plant: pitch dynamics

state-space representation

Error

The sensor process has a delay to break the feedback loop. The Euler’s
method was applied for the state integration. The PID controller was
implemented using the discrete-time formulation (9).

δ[n] = Kpe[n] + Ki (e[n − 1] + e[n]) + Kd (e[n − 1]− e[n]) (6)

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 12 / 31

2) Simulation Results of the High-level Implementation
Firstly a comparison of the state-space representation of the plant between
ForSyDe and Matlab was performed. The differences are because Matlab
makes use of high-order integration methods whereas in ForSyDe we have
implemented the first order Euler’s method.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

Matlab function step(ss(A,B,C,D))

ForSyDe

time (seconds)

P
it
c
h
 a

n
g
le

θ
 (

ra
d
)

Simulation of the plant:
Control signal δ was set to 1.0

during 10 seconds.

0 2 4 6 8 10

time (seconds)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
it
c
h
 a

n
g
le

θ
 (

ra
d
)

Overall system simulation:
Set-point was set to 0.2 rad

during 10 seconds.
Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 13 / 31

3) Process Network of the PID Controller
For VHDL code generation the Error and PID Controller processes
were implemented as a process network in ForSyDe-SystemC.

- x

K
p

e[n]

-
e[n-1]

x

K
d

+

e[n-1]

x

K
i

+

+
δ[n]

θ
desired

[n]

sensor[n]

e[n] = θdesired [n] − sensor [n] (7)

δ[n] = Kpe[n]+Ki (e[n−1]+e[n])+Kd (e[n−1]−e[n])
(8)

Three IP-cores were identified: addition, subtraction and
multiplication. A custom precision floating-point arithmetics was used
(1 signal bit, 8 bits for exponent and 18 bits for mantissa words).
Previously characterized for a Xilinx Zynq FPGA in terms of hardware
cost and failure rate in FIT (data from Xilinx Reliability Report).
More accurate FIT estimations should considers latitude, altitude and
mission time of the application.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 14 / 31

4) VHDL Code Generation of the PID Controller
The refinement-by-replacement methodology was applied in order to
replace each process in high-level by its respective IP-core.
It allows the low-level details regarding hardware cost and failure rate
of each process to be available in the high-level model.
The system model as a dot graph was automatically generated by
introspection from ForSyDe-SystemC.
This intermediate representation was read in Matlab and the
developed VHDL code generator tool automatically provides the
VHDL model with components instantiations and connections.

discpid

sub1_start_8_316_50_0_0

scomb2

mul1_sub1_4_108_30_1_0

scomb2

mul3_add1_4_108_30_1_0

scomb2

mul2_sub2_4_108_30_1_0

scomb2

sub2_sub1_8_316_50_0_0

scomb2

add1_sub2_6_296_50_0_0

scomb2

 reg1_add1_1_0_27_0_0
sdelay

add2_mul2_6_296_50_0_0

scomb2

add3_add2_6_296_50_0_0

scomb2

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 15 / 31

5) Co-simulation Environment

Simulink	Model
PID	Pitch	control

sp_n

vc_n

kp

ki

kd

start

c_n

ready

		:40350	

wrapper_pid

Double-Click	to
compile	HDL	files

Compile	HDL	Design

Double-Click	to
launch	HDL	simulator

Launch	HDL	Simulator

Add

proportional
part

Add1

derivative
part

intergrative
part Add2 Add3

compute
error Memory

1

Out1

Pulse
Generator

boolean

Data	Type	Conversion3

single

Data	Type	Conversion
single

Data	Type	Conversion1
single

Data	Type	Conversion4 single

Data	Type	Conversion5
single

Data	Type	Conversion6

double

PID	signal	VHDL

closed	loop	
response

u	 y

pitch_aircraft
VHDL

u	 y

pitch_aircraft
Matlab

Z-12

PID	signal	Matlab

set	point
	Angle

In1Out1

Enabled
Subsystem

In1Out1

Enabled
Subsystem1

0.0578125

Kp

0.05420

Ki

0.04697

Kd

PID	signal

e(n)

sp

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 16 / 31

5) Simulation Results of the Obtained VHDL Model
HW/SW comparison. Top: Control signal δ. Bottom: Pitch angle θ

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 17 / 31

6) Fault-Tolerant Solution using TMR

After evaluating the correct behavior of the non fault-tolerant
solution, a fault-tolerant model of the PID controller for the pitch of
an aircraft was manually developed using the multiple-stage TMR
scheme.
Each component of the process network was triplicated and a
majority voter was used.

-

-

-

v
o
t
e
r

x

x

x

k
p

e[n]
v
o
t
e
r

e[n-1]

---x

-x

-x

e[n]
v
o
t
e
r

k
d

---+

-+

-+

v
o
t
e
r

e[n-1]

---x

-x

-x

v
o
t
e
r

k
i

---+

-+

-+

v
o
t
e
r

---+

-+

-+

v
o
t
e
r

cv[n]

sp[n]

mv[n]

-

-

-

v
o
t
e
r

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 18 / 31

6) Characterization of the TMR Solution
FIT estimation and hardware cost for the non fault-tolerant and the TMR fault-tolerant models

Archite- FIT LUTs FFs DSP48E BRAM
cture x109 (53200) (106400) (220) (140)
non- 46.99 1856 367 3 0
fault-tolerant (3.5%) (0.34%) (1.4%) (0.0%)
Majority 0.0 27 0 0 0
Voter (0.05%) (0.0%) (0.0%) (0.0%)
TMR 7.367 6795 1101 9 0
fault-tolerant (12.8%) (1.03%) (4.1%) (0.0%)

The TMR scheme improved the system reliability from 0.6399 to 0.9324.
FIT values were estimated using the TMR reliability equation assuming
perfect voters.

Improving the TMR results
Better results can be achieved using the optimization tool of the design
flow. This tool automatically provides the VHDL code of the fault-tolerant
solution based on the NMR scheme.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 19 / 31

7) Characterization of the NMR Solution
FIT estimation and hardware cost for the non fault-tolerant and the TMR and NMR

fault-tolerant models

Archite- FIT LUTs FFs DSP48E BRAM
cture x109 (53200) (106400) (220) (140)
non- 46.99 1856 367 3 0
fault-tolerant (3.5%) (0.34%) (1.4%) (0.0%)
Majority 0.0 27 0 0 0
Voter (0.05%) (0.0%) (0.0%) (0.0%)
TMR 7.367 6795 1101 9 0
fault-tolerant (12.8%) (1.03%) (4.1%) (0.0%)
NMR 0.423 14958 2335 15 0
fault-tolerant (28.1%) (2.2%) (6.8%) (0.0%)

All the architectures fit in the FPGA device.
Achieved NMR scheme using 7, 5, 7 replicas for the subtraction,
multiplication and addition components, respectively.
Reliability of the NMR system equal to 0.9960.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 20 / 31

Summary

→ This work has presented a fault-tolerance design methodology from
abstract models.

→ Innovative aspect: the use of a formal system-level design based on
models of computations that can be integrated with low-level
dependability information through the use of IP-cores.

→ Bio-inspired algorithms and an automatic VHDL code generator tool
were integrated in the design flow in order to optimize the
fault-tolerant solution in terms of reliability and hardware cost.

→ The pitch control system of an aircraft was used as case study.
→ The achieved NMR solution was mapped on a FPGA device.
→ The NMR solution improved the reliability of the system from 0.6399

to 0.9960.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 21 / 31

Future Works
Programmable Logic

Fault-tolerant solution
Programmable Logic

Fault-tolerant solution

IP-cores
Configuration Memory

IP-cores
Configuration Memory

M1a

M1b

M1c

M2a

M2b

Mna

Mnb

Mnc

Module 1 Module 2 Module n

Soft Core ARMSoft Core ARM

M1a M2b

Mnc

M3

Reconfig.
Partition 1

Reconfig.
Partition 2

Reconfig.
Partition n

Static
Partition

Fault-tolerance
optimization

AXI
BUS

IP-cores metrics:
HW cost, power, FIT

Fetch IP and
reconfigure partition

Memory
BUS

best FT solution

Xilinx Zynq FPGA

Fault
metrics

→ Run-time reconfigurable systems will be modeled in high-level. It
enables to develop self-adaptive fault-tolerant solutions using
heterogeneous architectures.

→ Timing and hybrid redundancy solutions should be included.
→ Execution time precision and power consumption criteria as a

multi-objective fault-tolerance optimization problem.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 22 / 31

Acknowledgment

This work was developed with the support of CNPq, National Council of
Scientific and Technological Development of Brazil, of CISB,

Swedish-Brazilian Research and Innovation Centre, and of Saab AB.

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 23 / 31

Thanks for your attention

Do you have questions?

Contact:
Daniel M. Muñoz

e-mail: damuz@unb.br

Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 24 / 31

	Motivation
	Background
	Fault-Tolerance Design
	ForSyDe

	Methods
	General Adaptive Design Methodology
	Proposed FT Design Methodology

	Case Study: Pitch Control System
	Results
	Conclusion

