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Research Question

In order to deal with the increasing complexity of modern safety-critical
embedded systems and SoCs, it is important to know:
→ How modeling methodologies can enable the designer to express the

behavior of heterogeneous systems at a high level of abstraction?
→ How high level modeling methodologies can be used to design

fault-tolerant solutions?
→ How run-time reconfiguration can be integrated to fault-tolerant

strategies in a high level of abstraction?
→ How to automate this design process?

Feasible solutions should naturally lead to:
→ Faithfully generate self-adaptive fault-tolerant implementations of

heterogeneous systems in software and digital hardware.
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Hardware Redundancy

Triple Modular Redundancy (TMR)
Can detect and mask only one fault.
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Daniel M. Muñoz (UnB) Fault-Tolerant SoCs Aerospace Technology 2016 3 / 31



Redundancy Allocation

Redundant modules must be allocated in a proper way.

Multiple Stage Redundancy
The replication takes place at component level. For independent
component failures the multiple stage yields a higher redundancy than
high-level redundancy.
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ForSyDe (Formal System Design)

ForSyDe is a system design methodology that models systems at a
high-level of abstraction. It is based on:

Theory of models of computations (MoCs)
Functional programming paradigm

This approach allows for:
Modeling Heterogeneous embedded systems
Composition of heterogeneous models
Modeling adaptive and reconfigurable systems at high-level
Formal analysis and synthesis techniques by well-defined
transformations
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ForSyDe (Formal System Design)
System Model

A system is modeled as concurrent process network
Processes belonging to different models of computation communicate
via MoC interfaces
ForSyDe libraries in Haskell and SystemC to support the designer to
create a formal model and exist for several MoCs

I e.g. synchronous MoC, continuous time MoC, SDF MoC
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General Adaptive Design Methodology
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Proposed FT Design Methodology
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Case Study: Pitch Control System

In this case study the objective is to design a fault-tolerant autopilot that
controls the pitch angle θ of an aircraft.

Basic coordinate axes and forces acting on an aircraft. The input is the elevator deflection angle
δ and the output is the pitch angle θ of the aircraft. 1

1Case study obtained from Control Tutorials for Matlab and Simulink,
http://ctms.engin.umich.edu/CTMS/
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Case Study: Pitch Control System

- PID
Controller

Plant
State-
space

Sensor
H=1

    θ
desired

error θδ

Loop control for modeling the autopilot that controls the pitch of the
aircraft. Gray boxes represent the aircraft. Blue boxes will be
implemented in a digital circuit with fault-tolerance capabilities.
A fault-tolerant model of the Proportional Integral Derivative (PID)
controller must be automatically obtained and tested on a Zynq
FPGA device.
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Case Study: Plant Model
Assuming simplifications that the aircraft is in steady-cruise at constant
altitude and velocity and that equations governing the motion are
decoupled and linearized.

Pitch Formulation for a Boeing’s aircraft
α̇ = −0.313α + 56.7q + 0.232δ
q̇ = −0.0139α− 0.426q + 0.0203δ
θ̇ = 56.7q

(3)

 α̇
q̇
θ̇

 =
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1) ForSyDe Implementation of the Overall System

ForSyDe implementation using process constructors.
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The sensor process has a delay to break the feedback loop. The Euler’s
method was applied for the state integration. The PID controller was
implemented using the discrete-time formulation (9).

δ[n] = Kpe[n] + Ki (e[n − 1] + e[n]) + Kd (e[n − 1]− e[n]) (6)
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2) Simulation Results of the High-level Implementation
Firstly a comparison of the state-space representation of the plant between
ForSyDe and Matlab was performed. The differences are because Matlab
makes use of high-order integration methods whereas in ForSyDe we have
implemented the first order Euler’s method.
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Simulation of the plant:
Control signal δ was set to 1.0

during 10 seconds.
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Overall system simulation:
Set-point was set to 0.2 rad

during 10 seconds.
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3) Process Network of the PID Controller
For VHDL code generation the Error and PID Controller processes
were implemented as a process network in ForSyDe-SystemC.
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e[n] = θdesired [n] − sensor [n] (7)

δ[n] = Kpe[n]+Ki (e[n−1]+e[n])+Kd (e[n−1]−e[n])
(8)

Three IP-cores were identified: addition, subtraction and
multiplication. A custom precision floating-point arithmetics was used
(1 signal bit, 8 bits for exponent and 18 bits for mantissa words).
Previously characterized for a Xilinx Zynq FPGA in terms of hardware
cost and failure rate in FIT (data from Xilinx Reliability Report).
More accurate FIT estimations should considers latitude, altitude and
mission time of the application.
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4) VHDL Code Generation of the PID Controller
The refinement-by-replacement methodology was applied in order to
replace each process in high-level by its respective IP-core.
It allows the low-level details regarding hardware cost and failure rate
of each process to be available in the high-level model.
The system model as a dot graph was automatically generated by
introspection from ForSyDe-SystemC.
This intermediate representation was read in Matlab and the
developed VHDL code generator tool automatically provides the
VHDL model with components instantiations and connections.
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5) Co-simulation Environment
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5) Simulation Results of the Obtained VHDL Model
HW/SW comparison. Top: Control signal δ. Bottom: Pitch angle θ
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6) Fault-Tolerant Solution using TMR

After evaluating the correct behavior of the non fault-tolerant
solution, a fault-tolerant model of the PID controller for the pitch of
an aircraft was manually developed using the multiple-stage TMR
scheme.
Each component of the process network was triplicated and a
majority voter was used.
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6) Characterization of the TMR Solution
FIT estimation and hardware cost for the non fault-tolerant and the TMR fault-tolerant models

Archite- FIT LUTs FFs DSP48E BRAM
cture x109 (53200) (106400) (220) (140)
non- 46.99 1856 367 3 0
fault-tolerant (3.5%) (0.34%) (1.4%) (0.0%)
Majority 0.0 27 0 0 0
Voter (0.05%) (0.0%) (0.0%) (0.0%)
TMR 7.367 6795 1101 9 0
fault-tolerant (12.8%) (1.03%) (4.1%) (0.0%)

The TMR scheme improved the system reliability from 0.6399 to 0.9324.
FIT values were estimated using the TMR reliability equation assuming
perfect voters.

Improving the TMR results
Better results can be achieved using the optimization tool of the design
flow. This tool automatically provides the VHDL code of the fault-tolerant
solution based on the NMR scheme.
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7) Characterization of the NMR Solution
FIT estimation and hardware cost for the non fault-tolerant and the TMR and NMR

fault-tolerant models

Archite- FIT LUTs FFs DSP48E BRAM
cture x109 (53200) (106400) (220) (140)
non- 46.99 1856 367 3 0
fault-tolerant (3.5%) (0.34%) (1.4%) (0.0%)
Majority 0.0 27 0 0 0
Voter (0.05%) (0.0%) (0.0%) (0.0%)
TMR 7.367 6795 1101 9 0
fault-tolerant (12.8%) (1.03%) (4.1%) (0.0%)
NMR 0.423 14958 2335 15 0
fault-tolerant (28.1%) (2.2%) (6.8%) (0.0%)

All the architectures fit in the FPGA device.
Achieved NMR scheme using 7, 5, 7 replicas for the subtraction,
multiplication and addition components, respectively.
Reliability of the NMR system equal to 0.9960.
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Summary

→ This work has presented a fault-tolerance design methodology from
abstract models.

→ Innovative aspect: the use of a formal system-level design based on
models of computations that can be integrated with low-level
dependability information through the use of IP-cores.

→ Bio-inspired algorithms and an automatic VHDL code generator tool
were integrated in the design flow in order to optimize the
fault-tolerant solution in terms of reliability and hardware cost.

→ The pitch control system of an aircraft was used as case study.
→ The achieved NMR solution was mapped on a FPGA device.
→ The NMR solution improved the reliability of the system from 0.6399

to 0.9960.
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Future Works
Programmable Logic

Fault-tolerant solution
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→ Run-time reconfigurable systems will be modeled in high-level. It
enables to develop self-adaptive fault-tolerant solutions using
heterogeneous architectures.

→ Timing and hybrid redundancy solutions should be included.
→ Execution time precision and power consumption criteria as a

multi-objective fault-tolerance optimization problem.
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Thanks for your attention

Do you have questions?

Contact:
Daniel M. Muñoz

e-mail: damuz@unb.br
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