
Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Towards Runtime Adaptivity by using Models of
Computation for Real-Time Embedded Systems Design

Denis S. Loubach1, Eurı́pedes G. O. Nóbrega1, Ingo Sander2, Ingemar Söderquist3, Osamu Saotome4

{dloubach, egon}@fem.unicamp.br, ingo@kth.se, ingemar.soderquist@saabgroup.com, osaotome@ita.br

1Advanced Computing, Control & Embedded Systems Lab, University of Campinas - UNICAMP,

13083-860, Campinas, SP, Brazil
2Electronics and Embedded Systems Department, KTH Royal Institute of Technology, Stockholm, Sweden

3HMI & Avionics Department, Aeronautics, Saab AB, Linköping, Sweden
4Electronics Engineering Division, Aeronautics Institute of Technology - ITA, São José dos Campos, SP, Brazil

Abstract

Considering the aeronautics trend to the second generation of integrated modular avionics
adoption, dynamic adaptive real-time embedded systems become more and more important. In
this context, reconfiguration capability has posed itself as a new challenge for future avionics
design. Modern field-programmable gate array (FPGA), which also comes in system on chip
(SoC), offers runtime partial reconfiguration. This capability can be used to adapt at runtime to
changes in an uncertain environment or due to internal faults, for instance. Also, these SoCs are
capable to deliver significant computational power, including hard/soft multiprocessors, mem-
ories, and hard multipliers that can be combined to implement complex designs. That makes
FPGA-based systems interesting as processing nodes for next generation of avionics systems.
Addressing the aforementioned issues, this paper shows that runtime adaptivity is feasible to
be performed through a case study implementation on both software and hardware. To capture
and deal with the complexity of adaptivity, the system is modeled by using the theory of formal
models of computation (MoC), mainly the synchronous MoC. By the synchrony hypothesis (in-
stantaneous computation and communication) outputs are synchronous to inputs. Besides, this
MoC has similarity with clock-driven digital circuits, making it attractive for hardware synthesis.
Adaptivity may have two facets: (i) reconfiguration triggered by performance/power consump-
tion constraints; and (ii) regeneration, which is also a reconfiguration, but triggered by the fault
handling mechanism thus allowing the system to keep with a minimum functional level.

INTRODUCTION
Considering aeronautics current trend towards the second generation of integrated modular avionics
(IMA2G1) adoption, runtime adaptive real time embedded systems with mixed criticality2 become of

1The literature also presents the term ”Distributed Integrated Modular Avionics” (DIMA) for the second generation of
IMA (IMA2G)

2From the IMA1G concept, i.e., multiple software functions with different criticality levels on a single avionic com-
puting module. That was to keep the weight, volume and costs within reasonable limits

1



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

fundamental importance. Devising new architecture and system avionics concepts are urgent matters,
exploring recent advances on digital systems and aiming to significantly improve the balance between
performance and power consumption.

Avionics systems have unavoidably to deal with mandatory constraints such as safety and de-
pendability. Critical subsystems may be completely handled by software, and it is required that those
subsystems work correctly in all situations, complying with the set of constraints. A catastrophic
failure has to be avoided, and the system is expected to deliver its functionality even in a degraded
mode.

In this context, reconfiguration capability has posed itself as a new challenge for future avion-
ics architectures. For IMA2G, reconfiguration means the reallocation of functions to safe modules.
Nevertheless, our paper deals with a model for reconfiguration on both software and hardware.

The introduction of the first generation of integrated modular avionics (IMA1G), based on cen-
tralizing and reutilization of computer power, implied in increasing complexity and difficulty to com-
prehensive data analyses, when compared to the federated architecture where every function was
performed by an exclusive processing system [Wolfig and Jakovljevic, 2008, Bieber et al., 2012].

IMA1G comprises basically two complementary principles. The first one is about integrating
multiple software functions, with possible different criticality levels, on a single avionic computing
resource system. Nevertheless, this resource sharing principle brought some side effects and non-
functional dependencies among software functions. Proving system safety requires the global knowl-
edge of the system. It cannot be achieved by pieces in separate ways. As a second principle, it was
intended to simplify the design process and receive certification. As a consequence, the partitioning
concept was introduced, allocating to each function its own non-shared virtual resources to prevent
function interference on each other. Then, functions are partitioned considering space (resources
partitioning) and time (temporal partitioning) [Bieber et al., 2012].

IMA1G was intended to provide flexibility, interoperability, and integration, and consequently
less equipment and cost, and easy of certification. But fault tolerance and containment, both easily
achieved on the federated architecture, and also reconfigurability, became focal points for the next
version of the concept [Andrillon and Aviation, 2013]. Distributed IMA became the natural solution,
mixing both approaches for a better solution, leading to IMA2G that is now concentrating researches
and development efforts worldwide (i.e., Boeing, Airbus, Saab).

Modern field-programmable gate arrays (FPGAs) are capable to delivery significant computa-
tional power, including hardware/software multiprocessors, memories, and hardware multipliers,
which can be combined to implement complex system design solutions, especially if it demands
reconfigurability [Sterpone and Ullah, 2013]. More important, this reconfigurability may be fast
enough to be used in runtime, which makes FPGA-based systems an interesting component for future
avionics systems.

Nevertheless, it is still needed to perform further investigations aiming to cover heterogeneous
embedded systems considering features such as reconfigurability.

In this context, our paper shows that runtime adaptivity is feasible to be performed through a
case study implementation on both software and hardware. To capture and deal with the complexity
of adaptivity, the system is modeled by using the theory of formal models of computation (MoC),
mainly the synchronous MoC. Within this MoC, a process reads its inputs and computes the outputs
at each event cycle (discrete time). By the synchrony hypothesis (instantaneous computation and
communication) outputs are synchronous to inputs. Besides, this MoC has similarity with clock-
driven digital circuits, making it attractive for hardware synthesis.

The remainder of this paper is organized as follows. Next section presents the main concepts and

2



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

definitions used along with our research. After, the case study section introduces the system speci-
fication, in a high-level of abstraction, implementation specification, and the implementation details
of our modeled system. Next, we present the results related to the models implementation on both
software and hardware considering a heterogeneous SoC. Finally, we present the paper conclusions
and some possible future works.

BACKGROUND
This section introduces the main models of computation (MoC) concepts used in this paper, along
with ForSyDe modeling framework, real-time embedded systems and adaptivity.

Models of Computation
Different kinds of models exist to address different purposes. For instance, functional modeling is
used to address the functional behavior of a system. On the other hand, design and synthesis refine
into implementation details [Jantsch, 2003].

Definition 1. Model. An abstraction or simplification of an entity that can be physical system or even
another model [Jantsch, 2003].

Definition 2. Abstraction. Comprises a way for choosing which information or aspects to consider
when modeling a system [Jantsch, 2003].

A model of computation (MoC) is an abstraction of a physical computing device, and so, differ-
ent MoCs serve different objectives. The purpose of a MoC drives how it is designed and what are the
properties exposed [Jantsch, 2005]. That author also claims that a MoC has to support implementation
independence, composability, and analyzability.

In this context, MoCs are based on processes, events and signals. The following definitions are
derived from [Jantsch, 2003, Sander and Jantsch, 2008].

Definition 3. Event. Elementary information unit exchanged between processes.

Definition 4. Signal. Processes communicate to each other by writing to and reading from signals.
A signal is a sequence of events. Signals preserve the order that events are entered. Each event has a
tag and a value. Tags can be used to model physical time, the events order and other key properties
of a MoC.

Definition 5. Process. Receives and send events. The activity of a process is comprised of evaluation
cycles, which stands for a function application. Then, in each evaluation cycle the process receives
inputs, computes, and sends outputs. Generally, a process can have internal states or not.

Definition 6. Process Constructor. Parameterizable templates for instantiating processes, as a higher-
order function that receives a function as input and returns a function as output.

Then, processes constructors are used to create processes. New processes can be created to form
a hierarchical concurrent process network.

Definition 7. Model of Computation. Set of process and process networks that can be implemented
by a set of processes constructors.

3



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

ForSyDe Modeling Framework
Formal System Development (ForSyDe) [Sander and Jantsch, 2004] is a transformational design
methodology based on the functional programming paradigm. ForSyDe targets heterogeneous em-
bedded systems [Jantsch, 2003].

A system is modeled as a hierarchical concurrent process network in ForSyDe. Processes com-
municate with each other by signals. ForSyDe supports several different MoCs.

In ForSyDe we model a signal as a list of events, where the event’s tag is implicitly given by the
event’s position in the list. The semantics of a tag is defined by the used MoC, e.g., an identical tag of
two events in different signals does not imply that these events happen at the same time instant. All
events in a signal must have values of the same type [Sander and Jantsch, 2008].

Synchronous Model of Computation
Synchronous MoC split the time domain into slots, where everything inside a slot occurs at the same
time. The evaluation cycle of processes lasts exactly one time slot in synchronous MoC [Jantsch,
2003].

Definition 8. Perfect synchrony hypothesis. Neither computation nor communication takes time.

Following this hypothesis, the timing behavior is simply defined by the arriving of input events
considering the system handles input samples in zero time and waits until next input arrives.

Synchronous processes consume/produce exactly one event on each input/output in each evalua-
tion cycle. This implies total order of all events in any signal from a synchronous MoC. Events with
the same tag appear at the same time instant.

One may conclude that the hypothesis from Definition 8 does not hold for physical systems.
However, the hypothesis holds for simulated models and if a model is based on that hypothesis it
should behave in the very same fashion as a physical model implementation provided the physical
systems responds fast enough. In this context, fast enough means to compute outputs before the next
input arrives, i.e., to apply a function on an input and get its result ready within the same evaluation
cycle. This way we can handle functional and temporal behavior separately from each other. Then,
we focus on system functionality first (working based on perfect synchronous hypothesis), and so
during the implementation step we have to validate the fast enough criteria.

The mapSYn ForSyDe combinational process constructor, required to model a system according
to the synchronous MoC, is illustrated in Figure 1 [Sander and Jantsch, 2008].

mapSYn

(f)

i1

...in

o

Figure 1: Process constructor for mapSYn [Sander
and Jantsch, 2008]

p = mapSY (f)

where:

o = p(i1, . . . , in)

o[k] = f(ii[k], . . . , in[k])

The mapSYn process constructor takes a function f : D1 × . . . × Dn → E as argument and
returns a process p : S(D1)× . . .× S(Dn)→ S(E) with no internal state.

SY stands for the synchronous MoC.
For the sake of clarity, we are using the index n for processes inputs in ForSyDe definitions.

4



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Real-Time Embedded Systems
A number of works can be found in the literature considering reconfigurable real time embedded
systems. Just to mention some, there are the application of heterogeneous CPU/FPGA for avionics
test application [Afonso et al., 2013]; ERA project (Embedded Reconfigurable Architectures) [Wong
et al., 2011]; MORPHEUS project (Multi-purpOse dynamically Reconfigurable Platform for intensive
HEterogeneoUS processing) [Voros et al., 2013]; and ACROSS Project (ARTEMIS CROSS-Domain
Architecture) [Salloum et al., 2012].

Adaptivity
In this section we present the definitions related to adaptivity used along with this paper.

Definition 9. Adaptive. An adaptive system possesses a certain level of intelligence to actively change
its configuration based on the state of the system itself or its environment. Adaptiveness can be
enabled by reconfigurable computing or runtime reconfiguration. Adaptive computing is stated as
one of the reconfigurable computing research fields.

Reconfigurable computing comprises computation studies aiming at the use of reconfigurable de-
vices. Then, for a specific application and a specific time frame, the reconfigurable devices’ spatial
structure is changed to comply with a given objective [Bobda, 2007, Koch, 2013]. Reconfigurable
computing is intended to fulfill the distance between hardware and software, aiming higher perfor-
mance than software and keeping higher level of flexibility compared to hardware [Compton and
Hauck, 2002].

Definition 10. Runtime Reconfiguration (RTR). Basically, runtime reconfiguration is the possibility
to change a reconfigurable device’s functionality while that device is still executing something and
without stopping it. One can reconfigure a partition without affecting others by using partial recon-
figuration.

Definition 11. Partial reconfiguration (PR). A reconfigurable processor or reconfigurable device sup-
ports partial reconfiguration if it allows its programmable area to be divided into one or more par-
titions and each partition can be reconfigured/changed independently from each other and without
stopping others.

Definition 12. Full reconfiguration (FR). A reconfigurable processor or reconfigurable device sup-
ports full reconfiguration when it considers the whole programmable area as just one reconfiguration
area. In this case, the functionality can be changed at the cost of stopping the entire programmable
area.

Modeling of Adaptivity
We use the concept for modeling adaptivity introduced by [Sander and Jantsch, 2008], where the key
is to use functions in the same fashion as regular data types variables, then signals can also carry
functions.

It is possible to create an adaptive process with the concept of signals carrying functions (sf ). In
this case, function adaptivity is feasible to be implemented through the use of a reconfigurable device,
therefore functions can be loaded into the partitions in runtime. Moreover, we assume that adaptation
is instantaneous at the highest level of abstraction.

The definition of the adaptive process reconfigSY is given next.

5



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

reconfigSYn

i1

...in

o

sf

Figure 2: Process constructor for reconfigSY [Sander
and Jantsch, 2008]

apf = reconfigSYn

where:

o = apf (sf , (i1, . . . , in))

o[k] = sf [k](i1[k], . . . , in[k])

reconfigSY synchronous reconfigurable process can be modeled by using the mapSY ForSyDe
process constructor together with the function application operator ($)3:

reconfigSY = mapSY ($) (1)

Besides, reconfigSY can also be modeled by using the zipWithSY process constructor along with
the same function application operator ($):

reconfigSY = zipWithSY ($) (2)

The zipWithSY applies a pairwise function f onto two synchronous signals.

CASE STUDY
We implemented an encoder/decoder system [Sander and Jantsch, 2008], illustrated in Figure 3, as
our real-time embedded adaptive system case study using the synchronous MoC.

skey

genEncoder genDecoder
sf sf−1

apencoder apdecoder

sencF
Encoding

Functions
sdecF

Decoding

Functions

sencsinput soutput

Adaptive Processes

Figure 3: Encoder and decoder system, adapted from [Sander and Jantsch, 2008]

3The function application operator allows functions applications on signal values. This is defined as f $ x = f x.

6



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

In that system (Fig. 3), we have two adaptive processes: apencoder and apdecoder . A signal sinput [k ]
is encoded with and encoding function sencF [k ] given by sf [k ](skey [k ]), which is the genEncoder pro-
cess output signal. Following this hierarchical processes network, the encoded signal senc[k ] is taken
by the apdecoder process together with the decoding function sdecF [k ] given by the sf−1 [k ](skey [k ]).
Finally, the apdecoder produces the decoded signal soutput [k ].

Next, we present the summary of signals definition.

• skey : signal comprising the keys used in the encoding/decoding process

• sf : signal containing the encoding functions f

• s−1
f : signal containing the decoding functions f−1, which stands for the inverse of encoding

function

• sencF : signal comprising the encoding functions along with the respective keys

• sdecF : signal comprising the decoding functions along with the respective keys

• sinput : plain-text-like signal to be encoded

• senc : signal comprising the encoded data

• soutput : signal comprising the decoded data

The processes definition is given next.

genEncoder : sf [k](skey[k]) = sencF [k] (3)

apencoder : sencF [k](sinput[k]) = senc[k] (4)

genDecoder : sf−1 [k](skey[k]) = sdecF [k] (5)

apdecoder : sdecF [k](senc[k]) = soutput[k] (6)

Follow we present the listing with the ForSyDe implementation related to the model illustrated in
Figure 3.

Listing 1: ForSyde code for the encoder and decoder system

1 module EncoderDecoder where
2
3 import ForSyDe.Shallow
4
5 -- example of signals
6 s_keys_example = signal [1, 4, 6, 1, 1]
7 s_input_example = signal [1, 2, 3, 4, 5]
8
9 sub :: Num a => a -> a -> a

10 sub x y = y - x
11

7



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

12 add :: Num a => a -> a -> a
13 add x y = x + y
14
15 s_f = signal [(add),(add),(add),(add),(add)]
16 s_f_inv = signal [(sub),(sub),(sub),(sub),(sub)]
17
18 reconfigSY = zipWithSY ($)
19
20 genEncoder s_f s_keys = zipWithSY ($) s_f s_keys
21
22 genDecoder s_f_inv s_keys = zipWithSY ($) s_f_inv s_keys
23
24 ap_encoder s_encF xs = reconfigSY s_encF xs
25
26 ap_decoder s_decF xs = reconfigSY s_decF xs
27
28 system s_keys s_input = (s_enc, s_output)
29 where s_enc = ap_encoder s_encF s_input
30 s_output = ap_decoder s_decF s_enc
31 s_encF = genEncoder s_f s_keys
32 s_decF = genDecoder s_f_inv s_keys
33
34 -- to test, just type:
35 -- system s_keys_example s_input_example
36 -- result should be:
37 -- ({2,6,9,5,6},{1,2,3,4,5})

The code from Listing 1 brings examples of keys and input signals. One can test the system by
typing:

*EncoderDecoder> system s keys example s input example

({2,2,9,5,6},{1,2,3,4,5})

The output is a tuple comprised of the encoded signal and the decoded signal computed by the
system.

Model Implementation Details
We implemented this encoder/decoder system in a heterogeneous system on chip (SoC) following the
design proposed by [Loubach, 2016].

Two different areas comprise the SoC hardware architecture we used. A hard processor area
named programmable device (ProgDev), and a reconfigurable area named reconfigurable device
(ReconDev), as illustrated in Figure 4. A partition implementation is named prosopon.

In general, the implementation of a design is controlled by configuration bits, stored in a configu-
ration memory (CRAM) inside the FPGA.

According to [Loubach, 2016], the ProgDev has control over the ReconDev to manage which
prosopon will be programmed/used in a given time. To achieve this, we implemented a software
part named reconfiguration manager (ReMan) in C programming language.

Also, we instantiated a PR control block prblock, based on cyclonev prblock, in the
ReconDev. It is a specific implementation considering the SoC used in this case study.

The main steps of the runtime reconfiguration design are [Loubach, 2016]:

8



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Figure 4: SoC with the ProgDev and ReconDev areas overview. It also contains the ReMan software
application inside the ProgDev [Loubach, 2016]

1. Implement the ReconDev

(a) Describe the hardware without partitions;

(b) Identify the parts to be partitioned;

(c) Define the logical area and physical area for the identified partitions;

(d) Implement and test each prosopon;

2. Generate the bitstream for full reconfiguration (FR) and for each prosopon; and

3. Implement the ReMan in the ProgDev.

Then, we considered the adaptive processes implementations (Fig. 3) as one partition implemen-
tation allowing runtime partial reconfiguration (PR) to take place.

Hardware Components Used
The device we used was the Cyclone V SX SoC (part number 5CSXFC6D6F31C6N) within the
Cyclone V SoC development kit.

The ProgDev from this SoC integrates a dual-core ARM Cortex-A9 MPCore running at 925
MHz, which is the maximum supported frequency. The ReconDev has 41,509 adaptive logic mod-
ules (ALM)4.

4ALM is considered a basic building block.

9



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Software Ecosystem
To write the hardware description in a hardware description language (HDL), synthesize the hardware,
create partitions and generate the configuration bitstreams, for the ReconDev, we used the Quartus
Prime Version 16.0.0 Build 211 04/27/2016 SJ Standard Edition.

To write the C language code and generate the executable file to embed in the ProgDev we
used the ARM Development Studio 5 (DS-5) Altera Edition Toolkit version: 5.23.1, build number
5231008, arm-altera-eabi- toolchain version 4.9.1.

Implementation Model
Instead of (+) and (-) functions, we used two well-known symmetric-key cryptographic algo-
rithms: advanced encryption standard (AES) [Daemen and Rijmen, 2002b], and data encryption
standard (DES) [Daemen and Rijmen, 2002a] for our implementation model, considering that the
encoder/decoder functions can vary.

For AES, we used a 128-bit block size and 128-bit key size implementation based on [Strömberg-
son, 2014]. On the other hand, DES works with 64-bit block size and 64-bit key size (actually 56-bit
represent the key). We used a DES implementation based on [Usselmann, 2001].

Then our signal containing the encoding and decoding functions are defined as follows:

sf = 〈(encAES), (encDES), . . .〉
s−1
f = 〈(decAES), (decDES), . . .〉

Our implementation model is shown in Figure 5. For the sake of simplicity and due to hardware
resources sharing, without the loss of generality, the genEncoder and genDecoder processes were
unified into the genCrypto process. Also, the sf and s−1

f signals turned in sf ′ .

sf ′ = 〈(fAES), (fDES), . . .〉 (7)

where:
fAES stands for AES cryptography (encoder/decoder) function;
fDES for the DES cryptography (encoder/decoder) function

In the same sense, the sencF and sdecF signals became scrytoF , which carries the cryptography
(encoder/decoder) functions along with the respective keys. The scrytoF signal is actually the recon-
figuration signal generated from ProgDev to ReconDev to change the functionality of apencoder

and apdecoder processes. Together, those processes form a partition identified as Partition1, which
is subject to runtime partial reconfiguration in hardware.

As mentioned before, a partition implementation is named prosopon in our design. As we have
identified just one partition and two possible implementations for that partition (i.e., fAES and fDES),
then:

prosoponAES = fAES (8)
prosoponDES = fDES (9)

By following the methodology steps we:

10



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

skey

genCrypto
sf ′

ProgDev

scryptoF

apencoder apdecoder
sencsinput soutput

Partition1 from ReconDev

Figure 5: Encoder and decoder implementation model showing both SoC areas: programmable device
(ProgDev) and reconfigurable device (ReconDev) with one partition named Partition1

1. Implemented the ReconDev by describing the hardware without partitions; then we identified
the apencoder and apdecoder as one partition (Fig. 5); next we defined the logical and physical
areas for that partition in the ReconDev area; and finally we implemented and tested each
prosopon (i.e., prosoponAES and prosoponDES );

2. Generated the bitstream for full reconfiguration (FR) and for each prosopon (i.e., prosoponAES

and prosoponDES ); and

3. Implemented the ReMan in the ProgDev (genCrypto), which actually triggers the functional
reconfiguration.

RESULTS
In this section we present the static and runtime measuring of our implementation model (Fig. 5).

Static Data
We generated a bitstream without data compression for FR. This bitstream is required to configure
the ReconDev for the first time. The number of ALM needed to implement the complete system and
the bitstream file size (i.e., raw binary file .rbf) are shown in Table 1.

Table 1: Full reconfiguration static data

FR Measure Number
ALM 2,896
Bytes 7,007,204

11



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Related to the Partition1, we generated two different PR bitstreams modes (i.e., “and/or” and
“scrub” [Loubach, 2016]) for prosoponAES and for prosoponDES . The required number of hardware
resources to implement each prosopon is presented on Table 2. Table 3 shows the bitstream sizes.

Table 2: Prosopons and the number of ALM needed to implement them

Prosopon ALM
prosoponAES 2,849
prosoponDES 1,019

Table 3: Prosopons bitstream modes and sizes. (*)Data given in Bytes

Bitstream mode prosoponAES* prosoponDES*
Scrub 1,873,272 1,873,272
And/or 3,081,512 3,000,628

There is no difference in size between prosoponAES and prosoponDES for scrub mode, considering
that in this mode all CRAM bits related to a given partition are overwritten with new data, despite its
previous content.

Runtime Data
Once the FR and PR bitstreams were generated, we collected runtime data related to the encoder/de-
coder functions executions and also the time for reconfiguration taken in the PR and FR.

We applied a 50 MHz base clock (20 nano seconds period) for the encoder/decoder functions in
the ReconDev area. The execution time measuring are shown in Table 4. ProgDev clock frequency
was configured to 925 MHz.

Table 4: Functions and sub functions runtime clock cycles and computation time

Main function Sub function Clock cycles Time [ns]
fAES encode 63 1,260
fAES decode 63 1,260
fDES encode 18 360
fDES decode 19 380

The PR time measuring, that is, the time taken to perform the partial reconfiguration, are given in
Table 5. On the other hand, Table 6 shows the time need for one FR.

Table 5: Partial reconfiguration measured times. (*)Time is given in mili seconds [ms]

Bitstream mode prosoponAES* prosoponDES*
Scrub 7.76 7.76
And/or 12.7 12.4

12



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

Table 6: Full reconfiguration with no data compression measured time. (*)Time is given in mili seconds [ms]

Bitstream Time*
FR 29.6

CONCLUSION
We introduce in this paper a runtime adaptivity case study using formal models of computation (MoC)
for real-time embedded systems design.

A literature review covering adaptivity concepts, MoC definitions, events, signals, and processes
was presented. We also considered the utilization of ForSyDe modeling framework and the syn-
chronous MoC. Within this MoC a process reads its inputs and computes the outputs at each event
cycle (discrete time). Besides, this MoC has similarity with clock-driven digital circuits, making it
attractive for hardware synthesis.

To show that runtime adaptivity is feasible to be performed, we modeled an encoder/decoder
system in a high-level of abstraction (system specification) using ForSyDe. Next, we refined that
model and manually transformed it into an implementation specification to be designed in software
(ProgDev using C programming language) and hardware (ReconDev using hardware description
language) parts.

The implementation specification used a heterogeneous system on chip (SoC) as hardware plat-
form.

Results showed that one partial reconfiguration (prosoponAES in scrub mode = 7.76 ms) takes
less time to complete than a full reconfiguration (29.6 ms). Therefore, this enables the possibility to
runtime reconfiguration using partial reconfiguration techniques, then leading to runtime adaptivity
feasibility.

Our paper has impact on both industry, by enabling future efficient adaptive avionics, and academia,
by addressing a design methodology with high-level abstraction for runtime reconfigurability.

As future work, our design could take into account the use of systematic and automated transfor-
mations instead of manually/ad-hoc transformations among the different abstraction levels and still
preserving semantics.

ACKNOWLEDGMENT
This research work is partially supported by the Swedish-Brazilian Research and Innovation Centre
(CISB) – Project CISB ID 68-2015-A, Regular Research Awards grant #2014/24855-8 from São
Paulo Research Foundation (FAPESP), and the Altera University Program.

REFERENCES
[Afonso et al., 2013] Afonso, G., Baklouti, Z., Duvivier, D., ben Atitallah, R., Billauer, E., and Stilkerich,

S. (2013). Heterogeneous CPU/FPGA Reconfigurable Computing System for Avionic Test Application.
In Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 260–267.

[Andrillon and Aviation, 2013] Andrillon, B. and Aviation, D. (2013). Contribution of integrated modular
avionics of second generation for business aviation.

[Bieber et al., 2012] Bieber, P., Boniol, F., Boyer, M., Noulard, E., and Pagetti, C. (2012). New challenges for
future avionic architectures. Journal AerospaceLab, 4.

13



Aerospace Technology Congress
11-12 October 2016, Solna, Stockholm

[Bobda, 2007] Bobda, C. (2007). Introduction to Reconfigurable Computing: Architectures, Algorithms, and
Applications. Springer.

[Compton and Hauck, 2002] Compton, K. and Hauck, S. (2002). Reconfigurable computing: A survey of
systems and software. ACM Comput. Surv., 34(2):171–210.

[Daemen and Rijmen, 2002a] Daemen, J. and Rijmen, V. (2002a). The Data Encryption Standard, pages 81–
87. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Daemen and Rijmen, 2002b] Daemen, J. and Rijmen, V. (2002b). The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Springer Berlin Heidelberg.

[Jantsch, 2003] Jantsch, A. (2003). Modeling Embedded Systems and SoCs: Concurrency and Time in Models
of Computation. Morgan Kaufmann, 1st edition.

[Jantsch, 2005] Jantsch, A. (2005). Embedded Systems Handbook, chapter Models of Embedded Computation.
CRC Press.

[Koch, 2013] Koch, D. (2013). Partial Reconfiguration on FPGAs: Architectures, Tools and Applications.
Springer-Verlag New York, 1 edition.

[Loubach, 2016] Loubach, D. S. (2016). A runtime reconfiguration design targeting avionics systems. In 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, USA.

[Salloum et al., 2012] Salloum, C., Elshuber, M., Hoftberger, O., Isakovic, H., and Wasicek, A. (2012). The
ACROSS MPSoC – a new generation of multi-core processors designed for safety-critical embedded sys-
tems. In Digital System Design (DSD), 2012 15th Euromicro Conference on, pages 105–113.

[Sander and Jantsch, 2004] Sander, I. and Jantsch, A. (2004). System modeling and transformational design
refinement in ForSyDe [formal system design]. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 23(1):17–32.

[Sander and Jantsch, 2008] Sander, I. and Jantsch, A. (2008). Modelling Adaptive Systems in ForSyDe. Elec-
tronic Notes in Theoretical Computer Science, 200(2):39 – 54. Proceedings of the First Workshop on Veri-
fication of Adaptive Systems (VerAS 2007).

[Sterpone and Ullah, 2013] Sterpone, L. and Ullah, A. (2013). On the optimal reconfiguration times for TMR
circuits on SRAM based FPGAs. In Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference
on, pages 9–14.

[Strömbergson, 2014] Strömbergson, J. (2014). https://github.com/secworks/aes.

[Usselmann, 2001] Usselmann, R. (2001). https://github.com/freecores/des.

[Voros et al., 2013] Voros, N. S., Hübner, M., Becker, J., Kühnle, M., Thomaitiv, F., Grasset, A., Brelet, P.,
Bonnot, P., Campi, F., Schüler, E., Sahlbach, H., Whitty, S., Ernst, R., Billich, E., Tischendorf, C., Heinkel,
U., Ieromnimon, F., Kritharidis, D., Schneider, A., Knaeblein, J., and Putzke-Röming, W. (2013). MOR-
PHEUS: A heterogeneous dynamically reconfigurable platform for designing highly complex embedded
systems. ACM Trans. Embed. Comput. Syst., 12(3):70:1–70:33.

[Wolfig and Jakovljevic, 2008] Wolfig, R. and Jakovljevic, M. (2008). Distributed IMA and DO-297: Archi-
tectural, communication and certification attributes. In Digital Avionics Systems Conference, 2008. DASC
2008. IEEE/AIAA 27th, pages 1.E.4–1–1.E.4–10.

[Wong et al., 2011] Wong, S., Brandon, A., Anjam, F., Seedorf, R., Giorgi, R., Yu, Z., Puzovic, N., Mckee,
S., Sjalander, M., Carro, L., and Keramidas, G. (2011). Early results from ERA - embedded reconfigurable
architectures. In Industrial Informatics (INDIN), 2011 9th IEEE International Conference on, pages 816–
822.

14


