

A Practical Study on WCET Estimation on Multicore Processors for Avionics Applications

Prof. Edison Pignaton de Freitas B. B. Cozer, C. G. Ferreira, F. R. Wagner and T. Larsson

Agenda

- Introduction
- Background
- Related Works
- Tools and Methods
- Experiments and Results
- INSTITUTO DE INFORMÁTICA
- Conclusion and Future Work

Introduction

Introduction

Integrated Modular Avionics (IMA)

- NIVERSITY Evolution in the early 2000's
 - Integrated software modules running in the same hardware
 - RTCA/DO-297 Standard

Avionics Applications

- As safe-critical software avionics need to have their expected behavior known – WCET
- INSTITUTO DE INFORMÁTICA
- Independance and non-interference
 - Spatial and temporal separation
 - Spatial separation \rightarrow ARINC653 standard
 - Temporal is harder to analyse

Introduction

Multi-core Processors Evolution

- HALMSTAD
 JNIVERSITY
 Scalability and power efficiency for general purpose
 software execution
 - Avionics systems have strict timing concerns!

Goal

Discuss alternatives to improve avionics software WCET analysis to use multi-core processors

Background

Background

WCET Analysis for Multicore processors

- WCET Upper bound on execution time
- It is a fundamental metric for the development and the validation process of safety-critical systems
- Most techniques involve static analysis and/or measurements analysis only
- Multicore processors introduce new challenges
 - Shared internal processor resources (caches, memories and intra-processor communication buses)

WCET Analysis for Multicore processors

Approaches to deal with the problems and the drawbacks related

Approach	Drawback		
Shared resources serialization	Inefficient resource utilization due to		
through TDMA schemes	resource privatization		
Customizations in processor	Preventing the usage of COTS		
hardware architecture	processors		
Shared Resources Joint Analysis	Hard scalability when using multiplecores and difficult usage ofincremental development andcertification		
Response Time Analysis and resource conflicts delays	Doesnotconsiderstaticschedulinganddifficultusageofincrementaldevelopmentandcertification		
Monitoring Mechanisms using processor counters	Only monitor the impact of non-real time tasks while does not guarantee achievement of hard real time tasks deadlines.		

Background

Avionics Certification

- DO178-B/C (ED12B/C) Software Considerations in Airbone Systems and Equipment Certification
- Introduction of DALs (Design Assurance Level) based on a safety assessment process and hazard analysis
 - Catogorized by the failure type: Catastrophic, Hazardous, Major, Minor and No effect

Failure Condition	DAL	Maximum Failure Rate per Flight Hour	
Catastrophic	A	1.0E-9	
Hazardous	В	1.0E-7	
Major	С	1.0E-5	
Minor	D	1.0E-3	
No Effect	E		

Background

Avionics Certification

- Software development must produce artifacts defined by DO-178 standard
 - > SRS, SDD, SDT, STR etc..
- Improvement about how WCET is addressed according to the standard to face the introduction of new technology
 - Review and analysis of source code were no longer enough
 - Compiler, linker and hardware needed to be assessed in the calculation

Related Works

Related Works

Monitoring and WCET Analysis in COTS Multi-core-SoC-based Mixed-Criticality Systems – Jan Nowotsch

- Approach to determine maximum inter-process interference when shared resources are used
- Allows independent analysis of application, highly necessary in the avionics industry.
 - Enables incremental development and certification
 - Software re-use

Accurate and Efficient Identification of Worst-Case Execution Time for Multicore Processors: **A Survey** – Hamid Mushtaq

- Analysis of WCET for multi-core processors
- WCET calculation methods:
 - Static Analysis
 - Model Checking
 - Static + Model
- Highlights as major open issue the data sharing among cores

Challenges in Future Avionic Systems on Multi-core Plaftorms – Andreas Lofwenmark

- Enumeration of challenges and open issues for use of multi-core platforms
- Focusing in
 - How to mamage the CPU and memory access
 - How to deal with error corrections and detections on avionics platform – high impact in the access time
 - Access cache memory private or shared

Chronos: a Timing Analyzer for Embedded Software – Xianfeng Li

- Present Chronos WCET analysis tool
- Enumeration of COTS solutions for WCET calculation

Tools and Methods

Tools and Methods

Proposal Overview

- Observation about the need for studies about the usage of multicore platforms for avionics applications
- This work proposes studying alternatives to analyse the impact of multi-core platform in avionics applications
- As starting point, Chronos was selected to study WCET
- Scope: This first step focuses on the private X shared L2 cache memory

HALMSTAD NIVERSITY

Tools and Methods

Chronos – WCET Tool Analyzer

- Static analysis tool that generates WCET estimations
- Involves three sub-tasks:
 Program path analysis,
 Microarchitecture modeling and WCET calculation
- Models the processor as in-order and out-of-order pipelines, dynamic branch prediction
- Cache memory is full parametrized
- Introduce concepts of multicore analysis – defining the number of cores, bus allocation and resources sharing

DO RIO GRANDE DO SUL

HALMSTAD UNIVERSITY

Tools and Methods

Chronos – WCET Tool Analyzer

• Example of processor modeling

	-
	nF
_	
•	INSTITUTO DE INFORMÁTICA
	UFRGS

-cache:il1 il1:16:32:2:l	# 2-way associative, 1 KB L1 cache
-cache:dl1 none	# perfect L1 data cache
-cache:il2 il2:32:32:4:l	# 4-way associative, 4 KB L2 cache
-cache:il2lat 6	# L2 cache hit latency = 6 cycles
-mem:lat 30 2	# memory latency = 30 cycles
-bpred 2lev	# 2 level branch predictor
-fetch:ifqsize 4	# 4-entry instruction fetch queue
-issue:inorder false	# out-of-order processor
-decode:width 2	# 2-way superscalar
-issue:width 2	# 2-way superscalar
-commit:width 2	# 2-way superscalar
-ruu:size 8	# 8-entry reorder buffer
-il2:share 2	# 2 cores share an L2 cache
-core:ncores 2	# total number of cores = 2
-bus:bustype 0	# TDMA round robin shared bus
-bus:slotlength 50	# bus slot length assigned to each core = 50 cycles

Experiments and Results

Experiments

Private x Shared L2 cache

-3

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

UF

HALMSTAD UNIVERSITY

Benchmarks

					Bonomianto	
Processor configuration			n	Meaning	Description	
	Scenario 1 Scenario 2 Scenario 3	L1 128 B 128 B 128 B	L2 512 B 1 KB 2 KB	1 – edn	Vector Multiplication	Compilation of several cases which implements vector multiplications and array handling.
	Scenario 4 Scenario 5 Scenario 6 Scenario 7	128 B 128 B 128 B 128 B 128 B	4 KB 8 KB 16 KB 32 KB	2 – jfdcint	JPEG slow-but-accurate integer implementation of the forward Discrete Cosine Transform	Long calculation sequences (i.e., long basic blocks), single-nested loops.
	Scenario 8	128 B	64 KB	3 – adpcm	Adaptive Differential Pulse Code Modulation algorithm	16Khz sample rate data is used as input data and after calculation the result and compressed array are generated.
	1			4 - ndes	Complex embedded code.	A lot of bit manipulation, shifts, array and matrix calculations.

1 - edn benchmark analysis

Results

3 - adpcm benchmark analysis

2 - jfdcint benchmark analysis

4 - ndes benchmark analysis

Conclusion and Future Work

Conclusion

- Shared cache memory causes a major impact over WCET analysis
 - Confirming what is described in general by some related works
 - By consequence, affects the system determinism
 - Major challenge for multicore system certification

Future Work

- Wide up the analysis on simulated environment using more complex SW
- Execute the same analysis using a real multicore hardware platform
- Expand to processors architecture to model more than 2 cores
 - Chronos does not support more than two cores

Thank you!

Questions?!

This work is been performend under a cooperation between Federal University of Rio Grande do Sul in Brazil and Halmstad University in Sweden

IMPORTANT NOTICE:

The development and presentation of this work is financially supported by the Swedish-Brazilian Research and Innovation Centre – CISB. The authors thank CISB for the provided support.