
WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

A Practical Study on WCET Estimation on Multicore

Processors for Avionics Applications

E. P. Freitas*, B. B. Cozer*, C. G. Ferreira*, F. R. Wagner* and T. Larsson**.

*Informatics Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970

Brazil.

(E-mail: epfreitas@inf.ufrgs.br; bruno.cozer@gmail.com; cristiano.ec@gmail.com;

flavio@inf.ufrgs.br)

** School of Information Technology, Halmstad University, Halmstad, 301 18, Sweden.

(E-mail: tony.larsson@hh.se)

INTRODUCTION

On the early 2000's, avionics systems started to be employed as integrated software

modules embedded in a same hardware, as an evolution of previous concept of having a

same base hardware with several hardware cards, each one performing a dedicated task.

This concept, defined as Integrated Modular Avionics (IMA), was standardized in

(RTCA 2005) and brought a consistent improvement on avionics system design.

IMA systems rely mostly on Commercial Off-The-Shelf (COTS) hardware, leaving

most of dedicated and customized tasks to be performed by software and programmable

hardware applications. During the recent years, the IMA concept had broad acceptance

on the market, especially in civil avionics area. The foundations of IMA design rely on

the determinism of the combination of each application and the hardware over which it

is running. Depending on the criticality of the function being implemented by an IMA

embedded software application, it is mandatory to know the expected behavior of such

implementation in such a way that this application will not interfere on other ones

running over the same processor and sharing the same hardware resources (Lofwenmark

et al. 2014).

The best way to assure this independence and non-interference among applications

running over the same hardware is assuring the temporal and spatial separation among

them (Weilong et al. 2014). Spatial separation means to assure that each application has

its own memory area and this area will not be used by any other application except the

one intended to use. Temporal isolation means that a given application will seize the

hardware resources to execute only during a given pre-established amount of time and

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

this amount will not be exceeded in order to do not jeopardize the execution of other

applications that will run using the same hardware resources.

Spatial separation is a goal that does not present big challenges to be achieved, since

real-time operating systems (RTOS) compliant with ARINC653 standard (ARINC

2006) offer a robust tool set to assure the isolation of memory areas between

applications. However, temporal separation is a much more delicate issue to be dealt

with. This happens because in hard real-time applications each task has hard deadlines

to meet and the real-time operating system shall manage the scheduler in order to avoid

any unexpected and not deterministic behaviors. In order to assure such real time

performance the OS needs to know what is the effort, in terms of time consumption, that

each software application takes. Such metric, is named as Worst Case Execution Time

(WCET).

In the other hand, although the introduction of multi-core processors integrated in a

single chip (MPSoC) brought many improvements in scalability and power efficiency to

computer systems, it also posed some challenges compared to single core processors,

like the way to perform execution time calculation (Luque et al. 2012) or even

proposing new metrics for system performance analysis (Otoom et al. 2015).

This paper aims to discuss and to analyze alternatives to improve the WCET analysis in

order to cope with hardware technology evolution towards the usage of multi-core

processors in avionics systems. In this context, shared resources, tasks parallelism,

memory access latencies and inter-core communication, which are aspects that also

increase the analysis difficulty, will be highlighted.

BACKGROUND AND RELATED WORKS

WCET Analysis in Multicore Platforms

WCET analysis basically consists in finding a safe upper bound on the execution time

which satisfies the system time constraints. Most of the WCET estimation techniques

involve static analysis of the code or measurements and hybrid analysis (Mitra et.al

2007), (Mushtaq et al. 2013). First techniques were based in pure execution

measurements that usually reach a rough estimation, leading to a loss of performance.

With the technology advance, this kind of estimations (usually too pessimistic) were put

aside and new studies start to be develop to reduce the gap between estimation and

actual results.

WCET is a fundamental metric for the development and validation process of safety-

critical systems. In avionics industry, which requires high reliability, safety and

performance, the DO-178B/C is responsible to guide and audit the software

development process, including software reviews and analysis, where WCET plays a

major role.

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

WCET calculation is highly dependent of hardware architecture and resources of the

system. Nowadays, WCET analysis has achieved a high level precision in the

calculation of sequential programs executing on single-core processors (Wilhelm et al.

2013). There are available consolidated COTS software tools, widely used, to provide

WCET analysis. These analyses rely heavily in the time determinism of the software

execution flow, based on the assumption that only a single processing entity (either a

process or a thread) will execute in a given moment.

However, with the introduction of multi-core systems, this assumption is not valid

anymore. Although a processing entity can seize in an exclusive way a core in a given

moment, the several cores embedded into a MPSoC (Multi-processor System-on-a-

Chip) share other processor internal resources as caches, memories and intra- processor

communication buses. The usage of such shared resources in a same moment

invalidates the previously accepted assumption and poses a new challenge to estimate

an accurate WCET for hard real-time software applications (Nowotsch et al. 2014).

Several efforts were made in order to overcome this constraint. However most of them

bring significant draw-backs (Nowotsch et al. 2014) as depicted in Table 1.

Table 1. Drawbacks of possible WCET approaches for multicore processors

Approach Drawback

Shared resources

serialization through

TDMA schemes

Inefficient resource utilization due to resource

privatization

Customizations in

processor hardware

architecture

Preventing the usage of COTS processors

Shared Resources Joint

Analysis

Hard scalability when using multiple cores and

difficult usage of incremental development and

certification

Response Time Analysis

and resource conflicts

delays

Does not consider static scheduling and difficult usage

of incremental development and certification

Monitoring Mechanisms

using processor counters

Only monitor the impact of non-real time tasks while

does not guarantee achievement of hard real time tasks

deadlines.

Avionics Certification

Most safety-critical embedded software development needs to comply with guidelines

and standards in order to produce artifacts with a minimal level of quality, safety and

maturity (Lofwenmark et al. 2014).

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

Since early nineties it is mandatory for avionics that embedded systems need to comply

with standards created to be used as a guide to determine if the software will perform

reliably in an airborne environment.

The main standard followed by industry for avionics software systems development is

DO-178B - Software Considerations in Airborne Systems and Equipment Certification

(RTCA 1992), developed by the safety-critical working group RTCA SC-167 of RTCA

and WG-12 of EUROCAE. This standard is a guideline dealing with the safety of

safety-critical software used in certain airborne systems. The European agencies refer to

this document as ED-12B, as registered by EUROCAE.

During its system specification phase, every avionics software needs to be categorized

according with a Design Assurance Level (DAL). The DAL is determined based on a

safety assessment process and hazard analysis. A hazard is defined (FAA 2012) as a

condition that could foreseeably cause or contribute to an accident, an unplanned event

or series of events that results in death, injury, or damages to, or loss of, equipment or

property.

A failure hazard assessment (FHA) is performed in order to verify the consequences of

a failure condition in the system. The failures conditions categorization considers

basically their effects on the aircraft, crew, and passengers as depicted in table below

defined in (RTCA 1992).

Based on the definitions of Table 2, safety analysis tasks are accomplished in order to

determine the software DAL and are required to be documented in system safety

assessments (SSA). The relationship between function failure effects, DAL's and failure

rate are represented in Table 3.

Table 2. Failure types and consequences

Failure Type Failure Consequences

Catastrophic Failure may cause a crash. Error or loss of critical function required

to safely fly and land aircraft.

Hazardous Failure has a large negative impact on safety or performance, or

reduces the ability of the crew to operate the aircraft due to physical

distress or a higher workload, or causes serious or fatal injuries

among the passengers. (Safety-significant)

Major Failure is significant, but has a lesser impact than a Hazardous

failure (for example, leads to passenger discomfort rather than

injuries) or significantly increases crew workload (safety related)

Minor Failure is noticeable, but has a lesser impact than a Major failure

(for example, causing passenger inconvenience or a routine flight

plan change)

No Effect Failure has no impact on safety, aircraft operation, or crew

workload.

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

Table 3. Design Assurance Levels per failure types

Failure Condition DAL Maximum Failure Rate per Flight Hour

Catastrophic A 1.0E-9

Hazardous B 1.0E-7

Major C 1.0E-5

Minor D 1.0E-3

No Effect E --

Furthermore, after specific safety analysis (modulated), the hazard could be mitigated

by system architecture aiming to decrease the DAL level, since development and

certification costs greatly increase as the software criticality level is higher (Pop et al.

2013).

DO-178B (RTCA 1992) allows flexibility regard different styles of software life cycles,

and because of that, generally, is difficult to implement the first time. The flexibility

raises several abstract aspects that depends of how is choose to deal, could increase the

complexity, effort and cost. Independent of the aspects, all process must have defined

and documented the exit/entry criteria between development phases.

In order to comply with DO-178, the avionic software must follow the development

phases described in the standard. Depends of the software DAL, the phase is not

required. Each phase generates a certification artifact. Figure 1 illustrates the trace

between certification artifacts required by DO-178B/ED-12B.

In 2012, motivated by the

advances in hardware and

software technology and as

an insistent request by the

industrial partners, was

published the new

airworthiness standard, DO-

178C/ED-12C (RTCA

2012). Its content is based

on the previous standard,

but addressing software

development methodologies

and issues which were not

adequately addressed in

DO-178B/ED-12B.

Focusing in the subject of

this paper, the WCET

analysis was one of the

relevant topics discussed during the meetings to improve the standard. In DO-178B

Figure 1: Relationship between DO-178B Certification Artifacts

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

(RTCA 1992), the WCET analysis was identified as part of reviews and analysis of the

source code verification process (section 6.3.4.f - “accuracy and consistency”). Such

approach satisfied the goal in the past, when the main programing language was

assembly. Today it is impossible to perform this analysis only reviewing the source

code, without consider the time constrains, system architecture, memory accessing.

After many discussions regarding this topic, a sentence was added in section 6.3.4.f,

requiring that compiler, linker and hardware be assessed for impact on WCET. Also in

the introduction to the section on software reviews and analysis (section 6.3), it was

remarked that reviews and analysis alone may not completely satisfy some objectives

(e.g. WCET, stack analysis) and to achieve that, some tests may be also necessary.

Related Works

Since multicore processors are available since more than a decade, several different

approaches already have been discussed on how to take advantage from the increased

performance and power efficiency provided by such processor architectures, while still

coping with hard real-time requirements.

(Betti et al. 2008) proposed a modified Linux kernel for hard real-time embedded

systems. Although this solution succeeds to meet the proposed application deadlines, it

relies on resource privatization, what is not a desirable feature since it leads to an

inefficient resource utilization as discussed earlier in this section.

(Bastoni et al. 2010) brought concerns from another perspective: scheduler policies for

hard and soft real-time applications especially for large multi-core processors,

proposing that it may be a good approach to group cores in clusters internally.

Additionally, it brings an interesting early concern about execution overhead and the

impact of shared resources usage between cores that may impact schedulability and

performance of hard real-time applications.

(Luque et al. 2012) discusses a key factor that affects directly the way to design hard

real-time embedded systems, especially avionics. The new approach on how to account

CPU time in multicore processors is directly related with WCET calculation, that is a

fundamental metric for avionics verification and validation, especially regarding

applications that are intended to be ported from legacy single-core platforms to

multicore platforms.

Intra-processor shared resources pose a challenge to multicore performance for hard

real-time embedded applications. (Nowotsch et al. 2014) discussed and proposed a new

method of calculating WCET considering the shared resources inside an MPSoC,

naming it interface-sensitive WCET (isWCET). Indeed, the interface between multiple

cores through the shared resources is found to be a major player in WCET calculations

for multicore processors and will be the main focus of this paper analysis.

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

Besides the actual shared resources that may develop into a bottleneck for the

concurrent execution of hard real-time processes, multi-core processors also bring a

challenge regarding Execution Overhead time, since a considerable amount of inter-core

communications and protocols need to be conducted inside the processor, and the time

spent for these communications is added on top of the actual process execution time

(Saranya et al. 2014).

METHODS

Since the availability of open-source and academic WCET calculation tools for multi-

core platforms is still restricted, in order to assess the impact of different types and

amounts of shared resources, it was used a processor simulator tool. CHRONOS

(Xianfeng et al. 2007) is a static analysis tool that generates WCET estimations based

on SimpleScalar simulator architecture, a widely popular cycle-accurate architectural

simulator that allows the user to model a variety of processor platforms in software

(Burger et al. 1997). This allows the processor architecture to be tailored via input

parameters like timing models of different micro-architectural features present in

modern processors. In particular, it models in-order and out-of-order pipelines,

instruction caches, dynamic branch prediction and their interactions, in such a way that

the tool is able to define time bounds for each basic block execution under certain

execution contexts. Hence, CHRONOS allows simulating the impact of changing each

of these features over the WCET of known embedded software.

CHRONOS uses a series of step that go from C source file compiled with a dedicated

GCC in order to build the program control flow graph and detect flow and user

constraints. Afterwards, based on the configured processor model, the micro-

architectural model is built (at this point this paper will focus the experiments described

in the next section). Next, through Integer Linear Programming solver, the estimated

WCET is calculated, however considering the micro-architectural modeling. Finally, an

observed WCET can also be calculated using SimpleScalar toolset. The observed

WCET is guaranteed to be lower than estimated WCET (Xianfeng et al. 2007). The

summarized process is depicted in the flowchart below (Xianfeng et al. 2007).

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

Using a set of

benchmark

applications that are

distributed with the

tool, the relevant

parameters linked with

intra-processor shared

resources were

modified and the

impact of each one of

them over WCET was

assessed. Shared

caches and buses are

potential important

players in this analysis

(Chattopadhyay et al.

2010) and were

considered in the

experiments described

later in this work.

RESULTS AND DISCUSSION

In order to demonstrate the impact of architectural resources in the WCET calculation,

this paper prepared an analysis focusing on executing WCET benchmarks in different

processor model. Using a standardized set of benchmarks provided by Chronos

distribution, processor configuration scenarios were created combining the task

allocation, different L2 cache sizes and cache architectures to demonstrate the influence

of those parameters on execution time.

Experiments

The cache analysis was divided in two experiments according to the architecture of L2

cache: private or shared. In architectures in which the L2 cache is private, each core

accesses an exclusive cache, without interference of other cores. Opposing that case,

shared architectures allow sharing of L2 cache between two or more cores.

The experiments were designed using processor architecture with two cores, fixed size

of L1 cache and analyzed using the same set of scenarios for both experiments. Figure 3

illustrates the experiments design.

Figure 2: Chronos computation analysis flowchart

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

As mentioned above, several scenarios were developed

to stress the benchmarks, varying the modelling of

processor. It is made changing parameters used as input

for Chronos Tool during the microarchitecture modeling

phase. In the next paragraphs, there is a description of

the purpose of each benchmark and what is the similarity

and differences among the processor configurations.

Processor Configuration Scenarios

As described in the previous section, the Chronos Tool

Analyzer allows the processor’s modelling varying

parameters in the context of single or multicore

microarchitecture simulation. In this paper all scenarios

were developed using 2 cores, with one benchmark

running in each core. Since the focus of the paper is the cache memory analysis, all

parameters related with internal processing and buses were maintained the same for all

scenarios, in order to avoid interference of other components of the process.

In the experiments, it was decided to fix some parameters, like L1 cache size. The size

chosen to L1 cache was 128 bytes, since increasing its value would lead to an impaired

stress of L2 cache resource.

Therefore, the most significant modification in the processor modelling was the size of

L2 cache. The scenarios were created increasing the size in a range from 512 Bytes to

64 Kbytes. Additionally, the set of tests were duplicated changing the cache architecture

between private and shared. Thus, the scenarios summarized in the Table 4, were

developed for both experiments.

Table 4. Processor configuration scenarios

Scenario L1 Size L2 Size

1 128 B 512 B

2 128 B 1 KB

3 128 B 2 KB

4 128 B 4 KB

5 128 B 8 KB

6 128 B 16 KB

7 128 B 32 KB

8 128 B 64 KB

Benchmarks

Each experiment analysis was made grouping the benchmarks in pairs, one in each core,

and executed using Chronos Analyzer for each configuration processor scenario. This

allocation can be observed in the Figure 4.

L2 CACHE

PROCESSOR PROCESSOR

L1 CACHEL1 CACHE

CORE 1CORE 0

L2 CACHE

PROCESSOR PROCESSOR

L1 CACHEL1 CACHE

CORE 1CORE 0

L2 CACHE

PRIVATE CACHE

SHARED CACHE

Figure 3: L2 cache architecture

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

The benchmarks were developed following

particular restrictions to simplify the static

analysis and make possible the WCET

calculation. All implementations are

completely structured (no unconditional

jumps, exit from loops), with no ‘switch’

and ‘do/while’ statements. Additionally,

operators like ‘and/or’ for multiple

expressions are not used, as well as no

library calls.

Furthermore, the benchmarks listed in Table

5 were selected because they present a heavy memory allocation, since all of them

perform operations involving vector, arrays and calculations over these elements.

Table 5. Benchmarks

Benchmarks Meaning Description

edn Vector Multiplication Compilation of several cases which
implements vector multiplications and
array handling.

jfdcint JPEG slow-but-accurate integer
implementation of the forward
Discrete Cosine Transform

Long calculation sequences (i.e., long
basic blocks), single-nested loops.

adpcm Adaptive Differential Pulse Code
Modulation algorithm

16Khz sample rate data is used as input
data and after calculation the result
and compressed array are generated.

ndes Complex embedded code. A lot of bit manipulation, shifts, array
and matrix calculations.

Results and Discussion

The results analysis presented below, in form of graphs, summarizes all WCET

measurements extracted from the experiments execution. The graphs represent the

comparison between the benchmark execution using private and shared L2 cache

architecture.

There is more information that could be extracted from the graphs, like what is the best

WCET of a given benchmark in such scenario. Another possible information that can be

extract is how much L2 memory is necessary to achieve the best WCET. All those

points will be analyzed in the next paragraphs.

As a result of the experiments addressed by the bench-marks described in Table 5, and

executing all scenarios of Table 4, the graphs on Figures 5 – 8 were obtained. Solid

adpcm jfdcint

edn ndes

CORE 0 CORE 1

CORE 0 CORE 1

adpcm jfdcint

edn ndes

CORE 0 CORE 1

CORE 0 CORE 1

SCENARIO
2

128 B - L1
1 KB - L2

SCENARIO
1

128 B - L1
512 B - L2

Figure 4: Processor Configuration Scenarios

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

lines in the graphs represent private L2 caches while dashed lines represent shared L2

cache.

Figure 5: ndes benchmark comparison

Figure 6: edn benchmark comparison

Figure 7: jfdcint benchmark comparison

Figure 8: adpcm benchmark comparison

Analyzing the presented WCET graphs, it is possible to verify that if the modeled

processor does not have enough L2 cache to allocate all necessary memory for the

benchmark under execution, the WCET presents a number larger than its best

estimation. The estimated WCET decreased when the L2 cache increases its size,

approaching its best estimation. This can be observed by the difference between the

solid and dashed lines of the Figures 5 – 8.

Despite the similar behavior presented by the four tested benchmarks, it is possible to

observe in the figures that due to particularities of the computation performed by each

one of them, the approximation to the private L2 cache results present different shapes.

In Figure 5 and Figure 6 it is possible to observe sharper drops, while in Figure 7 and

Figure 8 the drops are softened. This is due to the implementation and purpose of each

benchmark. The sharper drops are consequence of a large amount of memory used by

both benchmarks. It increases the number of cache miss when the size of L2 cache is

not enough to store the necessary data. By the other side, in Figure 7 and Figure 8, the

drops are softened because the benchmarks are implemented focusing in performance.

Several calculations and operations are performed under the data allocated in the

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

memory, resulting in a special behavior in the graphs. The solid and dashed curves are

always following each other, evidencing for those cases that the bottleneck is not the

cache size but the computation power.

Additionally, all benchmarks WCET were larger when L2 cache is shared. A major

consequence of this finding is that in order to achieve the best WCET estimation it

would be necessary to increase L2 cache memory size. However, since COTS

processors have already pre-defined cache sizes, probably this WCET best estimation

number will not be reached. In this experiment, all benchmarks reach the best

estimation, either in private or shared cache, only when L2 cache was significantly

increased. This was more remarkable in the results shown in Figure 5, in which the

results of the shared L2 cache achieved the same results as the private ones only when

the 16 KB size was reached.

CONCLUSIONS

The experiments using a simulated dual core processor modeled on CHRONOS tool

with shared and private L2 cache, running pre-defined standardized benchmarks showed

that indeed, shared resources between cores pose a significant impact over WCET

analysis. This analysis was described in the related works (Nowotsch et al. 2014). The

consequence of that is the impact in system determinism, bringing major challenges on

avionics certification for multicore systems.

WCET estimation for multicore platforms is still an open topic for avionics industry

(Lofwenmark et al. 2014). However, given that the usage of multicore processors is a

point of no return, the problem still needs to be tackled. The contribution of this paper

towards this goal is to demonstrate the influence of L2 cache architecture in the WCET

estimation, highlighting the difficult to achieve the best WCET when the resource is

shared. The experimental results evidenced that increasing the L2 cache size allows to

reach better WCETs in tasks where there is a heavy memory access, increasing system

performance, especially in tasks with vector and matrix manipulations.

As future work it is possible to wide up the analysis on simulated environment

considering processors with more than 2 cores and also using more complex software as

input, thus verifying the impact of other shared resources. As a step ahead on the same

subject, it is intended to perform resources monitoring and WCET calculation on actual

real multicore hardware, aiming to minimize the impact of shared resources verified on

simulations performed previously.

ACKNOWLEGMENT

The authors thank to the Swedish-Brazilian Research and Innovation Centre – CISB for

the provided support to develop this research.

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

REFERENCES

RTCA, Inc. 2005. “RTCA/DO-297, integrated modular avionics (IMA) development,

guidance and certification considerations”,.

Lofwenmark, A. & Nadjm-Tehrani S. 2014 “Challenges in Future Avionic Systems on

Multi-core Platforms”, 2014 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), pp 115-119, (Conference proceedings)

Weilong, R. & Zhengjun Z. 2014 “Kernel-level Design to Support Partitioning and

Hierarchical Real-time Scheduling of ARINC 653 for VxWorks”. 2014 IEEE 12th

International Conference on Dependable, Autonomic and Secure Computing, pp 388-

393.

ARINC 2006. ARINC Specification 653: Part 1, Avionics Application Software

Standard Interface, Required Services (March 7, 2006) available from ARINC, 2551

Riva Road, Annapolis, MD 21401 Available at:

https://www.arinc.com/cf/store/index.cfm Accessed in: 2015-11-20.

Luque, C., Moreto M., Cazorla, F. J., Gioiosa, R., Buyuktosunoglu A. & Valero M.

2012 “CPU Accounting for Multicore Processors”, IEEE Transactions on Computers,

vol. 61, no. 2.

Otoom, M. & Paul, J. M. 2015 “Multiprocessor Capacity Metric and Analysis”. IEEE

Transactions on Computers, vol. 64, no. 11.

RTCA 1992, “DO-178B/ED-12B - software considerations in airborne systems and

equipment certification”.

Federal Aviation Administration 2012. “FAA Order 8040.4A Safety Risk Management

Policy Document Information”.

https://www.faa.gov/regulations_policies/orders_notices/index.cfm/go/document.curren

t/documentNumber/8040.4 .

Pop, P., Tsiopoulos, L., Voss, S., Slotosch, O., Ficek, C., Nyman, U. M. & Lopez, A. R.

2013 “Methods and tools for reducing certification costs of mixed-criticality

applications on multi-core platforms”. WICERT 2013 Conference Proceedings.

RTCA, “RTCA/DO-178C, software considerations in airborne systems and equipment

certification”, 2012.

Mitra, T. & Roychoudhury, A. 2007 “Worst Case Execution Time and Energy

Analysis”, in: Y. Srikant, P. Shankar (eds.), The Compiler Design Handbook, CRC

Press.

WCET Estimation on Multicore Processors for Avionics Applications
Aerospace Technology Congress

11-12 October 2016, Solna, Stockholm

Mushtaq H., Al-Ars, Z. & Bertels, K. 2013 “Accurate and Efficient Identification of

Worst-Case Execution Time for Multicore Processors: A Survey”, 2013 8th

International Design and Test Symposium (IDT), pp 1-6.

Wilhelm, R. 2008 “The worst-case execution-time problem overview of methods and

survey of tools”. ACM Transactions on Embedded Computing Systems (TECS), Volume

7 Issue 3, Article No. 36, April 2008.

Nowotsch, J., Paulitsch, M., Henrichseny, A., Pongratzy, W. & Schachty A. 2014

“Monitoring and WCET Analysis in COTS Multi-core-SoC-based Mixed-Criticality

Systems”, 2014 Design, Automation and Test in Europe Conference and Exhibition

(DATE), pp 1-6, 2014.

Betti, E., Bovet, D. P., Cesati, M. & Gioiosa R. 2008 “Hard Real-Time Performances in

Multiprocessor-Embedded Systems Using ASMP-Linux”. EURASIP Journal on

Embedded Systems Volume 2008, Article ID 582648, 16 pages

doi:10.1155/2008/582648.

Bastoni, A., Brandenburg, B. B. & Anderson, J. H. 2010 “An Empirical Comparison of

Global, Partitioned, and Clustered Multiprocessor EDF Schedulers”. 31st IEEE Real-

Time Systems Symposium, pp 14-24.

Nowotsch, J., Paulitsch, M., Buhler, D., Theiling, H., Wegener, S. & Schmidt, M. 2014

“Multi-core Interference-Sensitive WCET Analysis Leveraging Runtime Resource

Capacity Enforcement”. 26th Euromicro Conference on Real-Time Systems, pp 109-

118, 2014.

Saranya, N. & Hansdah, R. C. 2014 “An Implementation of Partitioned Scheduling

Scheme for Hard Real-Time Tasks in Multicore Linux with Fair Share for Linux

Tasks”, IEEE 20th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pp 1-9, 2014.

Xianfeng, L., Yun L., Mitra, T. & Roychoudhury, A. 2007 “Chronos: a Timing

Analyzer for Embedded Software”, Science of Computer Programming, Volume 69,

Issues 1–3, 1 December 2007, pp 56–67.

Burger, D. & Austin, T. 1997 “The SimpleScalar Tool Set, Version 2.0, Technical

Report CS-TR-1997-1342”, Report of University of Wisconsin, Madison,

http://www.simplescalar.com/docs/users_guide_v2.pdf.

Chattopadhyay S., Roychoudhury A. & Mitra, T. 2010 “Modeling Shared Cache and

Bus in Multi-cores for Timing Analysis”, Proceeding SCOPES '10 Proceedings of the

13th International Workshop on Software & Compilers for Embedded Systems, Article

No. 6, 2010.

