

Autonomous Powering of Wireless Sensors for Gas Turbine Applications

H. Staaf¹, E. Köhler¹, R. Heijl¹, V. Kuzmeno¹, A. Salem², S. Zenkic³, A. Lindblom³, E. Svenman³, J. Kemp⁴, M. Allen⁴, M. Christodoulou⁵, J. Roberts⁶, P.Lundgren¹, A. Palmqvist¹ and P. Enoksson¹

¹ Chalmers University of Technology, Sweden, ² Smoltek AB, Sweden, ³ GKN Aerospace Sweden AB, Sweden, ⁴ Coventry University, United Kingdom, ⁵ SCITEK Consultants Ltd

⁶ Rolls-Royce PLC, Derby, United Kingdom

Outline

- Wireless sensors
- Energy harvesting
- > Piezoelectric Harvester
 - Materials and Design
 - Measurements and Results
- > Thermoelectric harvester
 - Materials and Design
 - Measurements and Results
- Energy storage
 - Supercapacitors
 - Materials and Results
- > Conclusion

Introduction - What are Intelligent wireless sensor systems?

Introduction - Applications

- Environmental Monitoring
- Habitat Monitoring (light, temperature, humidity)
 - Integrated Biology
- Structural Monitoring
- Interactive and Control
 - RFID, Real Time Locator, TAGS
 - Building, Automation
 - Transport Tracking, Cars sensors
- > Surveillance
 - Pursuer-Evader
 - Intrusion Detection
 - Interactive museum exhibits
- Medical remote sensing
 - Emergency medical response
 - Monitoring, pacemaker, defibrillators
- Military applications and Aerospace

Introduction - Sensors

- > Test gas turbines
 - > 1500 sensors
 - > 19 km cable

Energy Harvesting

Introduction – Wireless sensors

- Wireless sensor (network)
 - > ZigBee 802.15.4
- > Power
 - ➤ WIFI startup 60 240 mW
 - Transmitting is 4 8 mW
- Several sensors possible

Piezoelectric energy harvesting

Piezoelectric energy harvesting - 2DOF

Piezoelectric energy harvesting – 2DOF Coupled harvesters

Piezoelectric energy harvesting – Broader bandwidth by coupling effect

Self-tuning - vibration harvester

Self-tuning harvester

- Broader bandwidth
- High power output, depending on resonance of the coupling beam

Results on gas turbine - powering IWS

Thermoelectric Energy Harvester

- Thermoelectric materials
 - > Temperature gradient
 - Electric potential (Seebeck effect)
 - Figure of merit ZT= σ S²T/κ
- Thermoelectric module
- ➤ Temperature gradient → electric potential
- N-type and p-type material
- Low efficiency
- ➤ Active cooling → high power

Thermoelectric Energy Harvester

- Proof of concept harvester
 - > Ex-service Rolls-Royce gas turbine

Test rig

Proof of concept harvester

Thermoelectric Energy Harvester

- Melted results
- > Enough power at ∆T=28°C

Success!!!

High Temperature Thermal Harvester

> High temperature version investigated

High Temperature Thermal Harvester Design

- Small enough for cooling channels
 - > 1 cm² and 0.4 g
- What materials?
 - > Thermoelectric
 - Insulation
 - > Electrodes
- Analytical modelling
 - Electrical conductivity
 - Thermal conductivity
 - Joule heating
 - Contact resistance
 - And more...

Simulated power and voltage with 17 couples. The cold side of the device is 600°C with 800°C on the hot side of the device. In this calculation DC-DC converter and cable losses are included.

Simulated power and voltage with 7 couples. The cold side is kept constant at 600°C with increasing hot side temperature.

High Temperature Thermal Harvester Thermoelectric materials

0.4

- Choice of thermoelectric material (600-800°C)
- Ba₈Ga₁₆Ge₃₀ (n-type)
- \rightarrow Yb_{13.6}La_{0.4}MnSb₁₁ (p-type)

p-Type zT

High Temperature Thermal Harvester Materials

Ceramic insulating material

Molybdenum electrodes

Fabrication and sealing in glove box

One Ba₈Ga₁₆Ge₃₀ leg

PTFE mold

High Temperature Thermal Harvester Measurements

- Chalmers measurement
 - Close to simulations
- > GKN measurement
 - > Higher temperature
 - > Bad thermal contact

High Temperature Thermal Harvester Measurements

- > GKN furnace
 - Survived 800°C
 - Bad thermal contact
 - Internal contact bad

Supercapacitors

What is a supercapacitor?

An electric double-layer capacitor (EDLC), also known as supercapacitor, supercondenser, electrochemical double layer capacitor, or ultracapacitor, is an electrochemical capacitor with relatively high energy density.

Electrostatic Electrochemical double-layer A P C = Q Q A D Callon Electrode Activated carbon Electrode Electrode Electrode Separator Collector Electrode Collector

Supercapacitors vs Batteries

Disadvantages compared to batteries

- Low electric energy density, low Wh/kg
- High self discharge, discharges when not used
- ➤ Low max voltage, for commercial electrolytes
- Voltage drop during discharge

Advantages compared to batteries

- ➤ Long life, Low cost *per cycle*
- Very high rates of charge and discharge
- Extremely low internal resistance, means low heating levels
- High output power
- Improved safety, no corrosive electrolyte and low toxicity of materials

Supercapacitor Electrode material

- Electrical conductivity
- Surface area
- Hierarchical porosity
- Mechanical stability
- Electrochemical stability
- Sustainability

Supercapacitor Electrode material

Sample	Nitrogen content [%]	Specific surface area [m²/g]	Electrical conductivity [S/cm]	Specific capacitance [F/g]
Pure CNFs	-	45	4.5	46
N-doped CNFs	4.0	25	10.2	58
CNFs + DWCNTs	-	60	85.3	163
CNFs + MWCNTs	÷	168	98.2	241

SEM images of electrode materials: pure CNFs (A), N-doped CNFs (NCNF) (B), CNFs functionalized with DWCNTs (C) and MWCNTs (CNF/MWCNT) (D)

- a. SEM images of the CNFs synthesized from regenerated cellulose;
- b. AFM image of the same CNFs

High temperature supercapacitor Separators

Major considerations for separator selection

- Thermal stability: for high temperature
- Mechanical property: for convenience of manual assembly
- Affinity to electrolytes

High temperature supercapacitor Electrolyte

Aqueous electrolyte

- Good ion mobility
- > Low voltage, 1 V due to the water electrolyses
- > Lower maximum temperature

Nonaqueous electrolyte

- > Aprotic solvents 2,5 V
 - > High cost
 - **Low ion mobility**
 - Low dielectric constant (low capacitance)
- > Ion liquids (room temperature molten salts) >3 V
 - Non-toxicity
 - > Non-flammable
 - High viscosity
 - Low ion mobility at room temperature
 - ➤ When you heat a salt it will melt (e.g. NaCl, 801 °C, CaCl 776 °C)

High temperature supercapacitor Electrolyte

Non-aqueous (EMIm Ac)

Treated at 120 °C, 6 h or 190 °C, 2 h

Notes for EMIm Ac

- Specific capacitance increases with temperature treatment (non-treated, 73 F/g → 120 °C, 79 F/g → 190 °C, 81 F/g).
- Cycling stability decreased after treatment (non-treated, 100+% → 120 °C, 75% → 190 °C, 91%)
- Treatment duration may play a more important role than temperature.

High temperature supercapacitor Packaging

High temperature supercapacitor Measurements

Glassfiber as membrane

CNF as electrode

Electrolyte

- ➤ 1-Ethyl-3-methylimidazolium acetate (EMImAc)
 - > 100 °C melting point
 - > 180 °C boiling point
- ➤ Electrolyte for 250-500 °C : 60% CaNO₃ and 40% KNO₃ (to be tested)

High temperature supercapacitor Measurements

0,035

Increased energy density with increased temperature

0,03 0,025 0,015 0,01 0,005 -0,1 -0,005 -0,01 -0,015 Potential (V)

Measurement setup (flexible supercapacitor)

High temperature supercapacitor **Measurements**

Increased energy density with increased temperature

Temperature (°C)	Capacitance (mF)	
37	57	
178 (up)	92	
250	194	
178 (down)	100	

Conclusions

Conclusions piezoelectric harvester

- Broader bandwidth and higher output is achieved by coupled cantilevers
- Passive self-tuning gives broader bandwidth
- ➤ The harvester is not sensitive to temperatures up to 100°C
- Coupled harvesters yield enough energy to power an IWS

Conclusions thermoelectric harvester

- Successful proof of concept energy harvester
 - Powered one sensor with excess heat from gas turbine (Could power 30 sensors)
 - Operating temperature too low
- > High temperature module
 - > Fabrication of a 1-couple prototype
 - Wi-Fi start-up with high temperature harvester?
 - Possibly at 160°C gradient with 1 cm² module (0.4 gram)

Conclusions supercapacitor high temperature energy storage

- Separator Glassfiber suitable
- > CNF as electrode (sustainable from cellulose)
- Electrolyte 1-Ethyl-3-methylimidazolium acetate (EMImAc)
- Increased energy density at elevated temperatures

Acknowlegdement

- > The European commision for funding the project:
 - Stargate
 - Smart-MEMPHIS
- Swedish Energy Agency
- Wallenberg Wood Science Centre
- > Swedish Research Council

Thank You for Your Attention!

Peter.Enoksson@Chalmers.se

