

Real Time Embedded Image Processing for Autonomous Unmanned Aerial Vehicles

Prof. Edison Pignaton de Freitas I. A. Wieczorek, C.E. Pereira, and A. Vinel

- HALMSTAD Introduction
 - Methods and Tools
 - Experiments and Results
 - Additional Results

Conclusion

HALMSTAD NIVERSITY

Introduction

Increasely demand for new UAVs in surveillance and inspection applications

- Time reduction
- Cost reduction
- Risk reduction
- 3D Missions (Dull, Dirty and Dangerous)
- INSTITUTO DE INFORMÁTICA
- Necessity of embedded computing power to process payload data while in mission

- Small UAVs
- FPGA / GPU Additional CPU hardware to Nav control process payload Flight control data Drivers Engine / Propeller

Engine / Propeller

UAV Frame

Camera

Mission dependent

UNIVERSITY • No big deal for large UAV platforms

- Big problem for small UAV platforms
 - Limited energy resources
 - Limited payload
 - Cost-benefit trade off

- Evaluate the usage of COTS embedded computer in small UAVs
 - Raspberry Pi 2
 - Ordinary UAV mission: detecting points of interest

Methods and Tools

SUL

Methods

• Study about the behavior of image processing algorithms used in POIs detection – timing requirements

• Configurated a set of experiments to stress the chosen COTS hardware

Indentification of the bottlenecks

Methods

UNIVERSITY • Detection of points of interest (POIs)

- Image acquisition
- Filtering
- Predetermined pattern of interest

Tools

- Raspberry Pi 2
 - 900MHz quad-core ARM Cortex-A7 CPU
 - 1GB RAM
 - Cheap
 - Easily available on the market
 - Lightweighted to be added on a COTS small UAVs

- **DNIVERSITY** Real-time operating system
 - Open source with Large community support

Easy port to RBP

Experiments and Results

Experiments

• The chosen application was executed in 4 different scenarios to analyze the hardware's behavior

Nº	# tasks	Description	
1	2	Two tasks Real Time	
2	4	Two tasks Real Time and two simple tasks	
3	8	Two tasks Real Time and six simple tasks	
4	12	Two tasks Real Time and ten simple tasks	

Results

Nº	# tasks	Description
1	2	Two tasks Real Time
2	4	Two tasks Real Time and two simple tasks
3	8	Two tasks Real Time and six simple tasks
4	12	Two tasks Real Time and ten simple tasks

UNIVERSITY • Missed deadlines assuming 0.3309s (worst execution time in scenario 1) as threshold

Nº	# tasks	# Deadline not respected
1	2 tasks	0
2	4 tasks	737
3	8 tasks	896
4	12 tasks	977

Additional Preliminary Results

Payload and Mission Control Processing Integration Design for Electric Power Lines Inspection

Payload and Mission Control Processing Integration Design

HALMSTAD UNIVERSITY Electric Power Lines Inspection

- Autonomouns navigation and control
- Refining GPS data
- Embedded Video Processing

Payload and Mission Control Processing Integration Design Electric Power Lines Inspection "Well Behaved Scenarios..."

HALMSTAD UNIVERSITY Payload and Mission Control Processing Integration Design

Electric Power Lines Inspection ... but life is not so easy!

🔊 🚍 💿 🛛 italo@italo-Inspiron-7520: /media/italo/389996c1-4539-48cd-8068-5363f55131ab/italo/Skydrones/Line Det

- #1 YAW: -9 PID YAW: 497.0 Setpoint: 90.0 Erro:99.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -9 PID YAW: 497.0 Setpoint: 90.0 Erro:99.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -9 PID YAW: 497.0 Setpoint: 90.0 Erro:99.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337 #1 - YAW: -9 PID YAW: 497.0 Setpoint: 90.0 Erro:99.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -8 PID YAW: 492.8 Setpoint: 90.0 Erro:98.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -8 PID YAW: 494.0 Setpoint: 90.0 Erro:98.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -8 PID YAW: 494.0 Setpoint: 90.0 Erro:98.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -7 PID YAW: 489.8 Setpoint: 90.0 Erro:97.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -7 PID YAW: 491.0 Setpoint: 90.0 Erro:97.0
- #1 ROLL: 89.837228337 PID ROLL: -469.511685011 Setpoint: 0 Erro: -89.837228337
- #1 YAW: -7 PID YAW: 491.0 Setpoint: 90.0 Erro:97.0
- #1 ROLL: 89.3489396198 PID ROLL: -467.460872399 Setpoint: 0 Erro: -89.3489396198 #1 - YAW: -6 PID YAW: 486.8 Setpoint: 90.0 Erro:96.0
- #1 YAW: -0 PID YAW: 480.8 Setpolit: 90.0 EFT0:90.0
- #1 ROLL: 89.3489396198 PID ROLL: -468.046818859 Setpoint: 0 Erro: -89.3489396198 #1 - YAW: -6 PID YAW: 488.0 Setpoint: 90.0 Erro:96.0

Conclusions

Conclusions

HALMSTAD NIVERSITY • The RBP

- Inexpensive hardware
- Easily accessible
- Possible to be used in real time applications, but with serious restrictions

Thank you!

Questions?!

This work is been performend under a cooperation between Federal University of Rio Grande do Sul and the company SKYDRONES in Brazil and the Halmstad University in Sweden

IMPORTANT NOTICE:

The development and presentation of this work is financially supported by the Swedish-Brazilian Research and Innovation Centre – CISB. The authors thank CISB for the provided support.