Model Based Design within Conceptual Aircraft Design

> Ingo Staack FT 2016, Stockholm 2016-10-11

Agenda

- MBSE in Aircraft Systems Conceptual Design (ASCD)
 new challenges and motivation
- Model Types & the Use of Models
- Modelling Approaches / Integration
 - by means of KBE
 - Graph Modelling

Why Conceptual Systems Aircraft Design?

More electrical Airplane: Power Electronics

"....the most significant common lessons learned are within the EMI/EMC discipline and could become showstoppers if not identified or applied."

PE technical issues dispatched by discipline

source: Michel Todeschi and Frédéric Salas (Airbus), "Power Electronics for the Flight Control Actuators", in Recent Advances in Aerospace Actuation Systems and Components publisher = {Institute National des Sciences Appliquées (R3ASC), Toulose, France, 2016

- a possible showstopper?
- workarounds?
- can this be addressed during the conceptual aircraft design process?
 If yes, how?

From the Free-/Water-fall towards Concurrent Engineering

• see also: top-down vs. bottom-up approach

LINKÖPING UNIVERSITY

Model Types, Model Transformations and Model Implementations

Implementation

- change from risk management to management of complexity & details?
- from pure mechanical engineering towards software (data) engineering, systems engineering and project management
- conventional (eventual OOP), graph based, causal/acausal....
- maintain multiaspect and multidomain view

FT2016; Ingo Staack

Framework Design: Information Model

- XML based: a good (low-level) solution
 - several standards: CPACS, TEI (literature), Ecl@ss (acquisition, components), ISO/EC 81346 (construction builiding), etc.
- parametric design
- Object-Oriented Programming (OOP)
 - (acausal) XML Schema XML Schema Hopsan "Matlab" "CATIA" Configurator /Dymola XML XML **VB** Script RAPID Parser Parser Tango Central **CAT** Part Tornado XML CAT Product Database

XML Based Tool Integration

- Strict design space limitation (robustness counts!)
- CATIA model topology different from the XML data setup
 → complex data translations required

Example: Airfoil Representation

Unified parametric airfoil description [Melin T, 2011]:

 airfoil representation by four 2nd-order Beziér curves:

$$\overline{x}(t) = (1-t)^{3} \overline{p}_{0} + 3(1-t)^{2} t \overline{p}_{1} + 3(1-t)t^{2} \overline{p}_{2} + t^{3} \overline{p}_{3}$$
Parameters

- very robust format
- name describing the geometry
 → perfect condition for (binary) optimization algorithms
- only drawback: airfoil with a S-shaped trailing edge unrepresentable

Name	Var	Range	2
Leading edge			. <u>E</u> 0.05
Upper Nose fraction	k ₁	[01]	offeyo
Lower Nose fraction	k ₂	[01]	đ
Upper side			
Upper thickness	Η _υ	[01]	Eur
Upper thickness position	Pu	[01]	et 0.05
Upper forward fraction	k ₃	[01]	, coor
Upper rearward fraction	K ₄	[01]	Loffe [
Lower side			
Lower thickness	H	[01]	_
Lower thickness position	PL	[01]	-
Lower forward fraction	k ₅	[01]	
Upper rearward fraction	K ₆	[01]	
Trailing edge			
Trailing edge gap	g	[01]]
Boat tail angle	β	[-ππ]	
Release angle	α	$[-\pi\pi]$]
Upper trailing edge fraction	k ₇	[01]]
Lower trailing edge fraction	k,	[01]	

scheme

name: 'fuselageSplines' origin: [1x1 xxpos] topCurve: [1x1 catspline] bottomCurve: [1x1 catspline] sideCurve: [1x1 catspline] centerCurve: [1x1 catspline] csXPos: [9.09090909090909091e-04 0.05454545454545455 0.1400000000000 0.2709090909091 0.301818181818182 0.9290909090909 1] csShape: {1x7 cell} CCPtZ: [0.100414782182459 0.124144046347076 0.158758315259559 0.200231871634599 0.206773087711345 0.185228819621525 0.126341119766233] UCPtZ: [0.003849348808590 0.118844251043589 0.157195673371483 0.233855439922611 0.252837956337231 0.181019220466613 0.0512431197662331 BCPtZ: [0.002689499448654 0.102338781443703 0.211452197300955 0.368413438422219 0.339551103348670 0.166093028059933 0.057239880233767] SCPtY: [0.003931507667016 0.157264255436601 0.226082600281460 0.319071406826992 0.347772387751561 0.433007135881411 0.032668000000000]

0.1

.0.1

.0.2

-0.3

xxfuselage.m

0.2

0.2

0.1

.0.1

-0.2

-0.3

-0.4 -0.2

0.2 0.4

3: at 0.140

FT2016; Ingo Staack

One Dataset – Different Low fidelity Geometry Representation

Modelling Approach: Power Components vs. Signal (Control) Components

Modelling Trends: Unified Modelling or Semantic Handling Capabilities?

- Cyber-Physical Systems
- unified modelling or enabled model interpretation?
- *"the right tool/method for the right topic"* (efficiency, transparency, effort)

 $\ensuremath{\textit{Different}}$ (analytical) models of a hydraulic power supply

The semantic web approach (source: Bernes Lee)

Closing the Gap

FT2016; Ingo Staack

KBE: System Architecture and Integration of Simulation Models

<u>KBS</u>: System Knowledge Base

- <u>KBE</u>: Element Knowledge Base
- serve for the translation from meta-components towards the simulation components in the library

Req. & project related data \rightarrow (total) system simulation

FT2016; Ingo Staack

Project data

Requirements

Certification

Requiremen

Simulation

1odel Code

17

(standard) Component Library Simulatio Program

Design

Compiler

KBS

Complexity – How to maintain a **TRANSPARENT** process?

- how to hold overview?
- how to present/visualize huge data and complex dependencies (network/graph) structure
- tool efficiency (e.g. build-up and maintenance of KBE tools)
- flexibility

Graph Modelling – the Solution?

- conventional: product tree with cross-references
- --> Nework of nodes (instances) and relationships

FT2016; Ingo Staack

XML - FTA

- System related FTA analysis
- OOP MATLAB implementation
- automated system reliability analysis possible?
- <u>Weak point: FMEA!</u>

Probability (Quantitative)	1.0 10 ⁻³		0 ⁻³ 10	⁻⁵ 10 ⁻⁷		10 ⁻⁹
Probability (Descriptive)	FAR	Probable		Improbable		Extremely Improbable
	JAR	Frequent	Reasonably Probable	Remote	Extremely Remote	Extremely Improbable
Failure condition severity classification	FAR	Minor		Major		Catastrophic
	JAR	Minor		Major	Hazardous	Catastrophic

Using:

•

- XML format "Extensible Fault Tree Object Model" (XFTOM)
 - graphic representation using mind map "Freemind" format (.mm)

Conclusion

- ✓ automated simulation integration process
- $\checkmark\,$ knowledge base approach
- ✓ backed by the XML language family
- ✓ Good adaptability
- ✓ Simulation model graphics

- requirement KBS translation
- Graph based implementation

Networking...

ingo.staack@liu.se https://www.iei.liu.se/flumes

Additional (XML) Benefits

• ca. 100 Components; ca. 200 connections.

- re-grouping of complexmultidisciplinary systems
 - "optimized" subsystem grouping
 - separation of different systems;
 e.g. control system extraction

Conclusion

- \checkmark automated simulation integration process
- \checkmark knowledge base approach
- ✓ backed by the XML language family
- ✓ Good adaptability
- \checkmark Simulation model graphics

- requirement KBS lacksquaretranslation
- Graph based implementation

What is the "optimal" amount of details?

- Quantitative assessment of uncertainty possible (knowledge, overhead)
- application / topic dependent (system design vs. component design)

