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Abstract 
Models based on statistics have a long history in aircraft design. They are used for both components, 
subsystems and aircraft as a whole. The idea is that existing designs represent a knowledge base of 
what are achievable also for a new designs. In this way characteristics of a new design with similar 
characteristics can be estimated with some accuracy without going into details about the design as 
such.  
 
With conventional statistical methods, e.g. multiple regression analysis, some entities are assumed 
to be independent variables, while other are assumed to be dependent from these. The fact is that 
there usually are rather strong correlations among all the entities. An alternative very useful 
technique for this kind of models is the Singular Value Decomposition SVD. It is a technique where 
a set of synthetic orthogonal parameters are generated. These are automatically arranged to be truly 
independent and have the attractive property that they will have an influence of rapidly descending 
order. This means that only a few parameters can be used to represent what appears to be complex 
relations. In this paper this is demonstrated on datasets of civil and military aircraft, as well as for 
components and subsystems. 
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INTRODUCTION 
Models based on statistics have a long history in aircraft design, most importantly for weight 
estimation, see e.g. Ahl (1969), St. John (1969). They have a broad applications in aircraft design as 
described e.g. in Torenbeek (1980), Roskam (1985). They are used for both components, as in Krus 
(2005), subsystems and aircraft as a whole. The idea is that existing designs represent a knowledge 
base of what are achievable also for a new designs. In this way characteristics of a new design with 
similar characteristics can be estimated with some accuracy without going into details about the 
design as such.  
 
Using singular value decomposition, introduced in Mandel (1982), it is possible to create a model 
that has a few synthetic parameters as inputs and all the attribute of the design as outputs. This 
includes both design parameters and functional characteristics. It is then possible to quickly estimate 
a design from given requirements, by solving the resulting system of equations. Interestingly it can 
also be used to estimate performance and other characteristics from limited data. 
 
Another very useful application is for modelling of components and subsystems. In the paper an 
engine model is presented that with high accuracy can relate engine dimension, i.e. diameter, length, 
weight, bypass ratio, trust and specific fuel consumption. It is also possible to include year of 
introduction as one variable and in this way also have a mechanism for technology evolution over 
time. 
 
In a design situation the SVD model can be used in the role of a meta model. Instead of making a 
parametric design of a higher fidelity that is optimized for each situation, It is possible to optimize 
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for a few situations and then build a SVD-model based on these. In this way a meta model with high 
accuracy can be obtained. Ones an optimal solution has been reached it can be recalculated and be 
added to the set of data points the SVD model is based on.  
 
Finally, SVD analysis can be used of test a given parametrization by studying the correlation with the 
ideal SVD parameter set. This is useful since it sometimes an advantage to have a parametrization 
that have a clearer interpretation than the synthetic SVD parameter set can provide. Interestingly, it 
is also possible to derive the number of driving requirement in a design by studying a number of 
instances of a particular kind of product. 
Singular Value Decomposition (SVD) is a technique that is related to principle component analysis. 
The result is essentially the same but it involves an elegant mathematical method to obtain a model 
that is aligned with the main axis of the data set. Consider the data set X which is a  matrix. Then 
there exist a decomposition of the form: 
         TX = U× W× V  (1) 
 
 
where W is diagonal. This is the Singular Value Decomposition, SVD. This can look like this: 
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The consequence of this operation is that if each row in the X and U matrix represents a data set of 
the entity that should be modelled., any point in U is mapped onto X trough the matrix product . 
Usually the resulting matrices are arranged in such a way the diagonal elements of the W-matrix are 
in descending order. Hence the influence of the u variables are in descending order in each row, which 
means that the last ones can be omitted in order to get a simpler model without too much loss in 
accuracy. However, for this to be valid the dataset should first be centred around the mean value. This 
can be done by subtracting the average of each column in the x-vector from the values of each column. 
An interesting property of the U matrix is then that the sum of the variance of each column is one. 
That is: 
       2

1
1n

iji
u

=
=∑  (3) 

This means that all columns (that is parameters) have the same deviation  . The   matrix is then a 
weight matrix with only diagonal elements, and   is a matrix that rotates the coordinate system from 
the main axis into  . 
 

 
 

TX = S× W× VS× WS
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To estimate parameters and properties the following equation is used: 
 
         TX = S× W× V  (4) 
 
Here the X  and  S   are vectors. S  is the input vector with SVD-parameters that are orthogonal and   
X  is the estimated values of parameters and properties. This can look like this: 
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This can be written as 
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Note that since the orthogonal parameters are sorted in ascending order it is often sufficient to use 
only a few input parameters. In this example it could be reduced to just one or two parameters so that 
the system gets reduced to: 
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Note that the individual element in the k matrix is the same as before. The same result is therefore 
achieved by just setting the last element in the input vector in equation (5) to zero. 
One issue with this model is that the elements variance of the S-vector is dependent on the number of 
data set, and hence also the K-matrix. Therefore, it can be suitable to normalise the S-vector so that 
the variance of the elements is one. This is simply done by dividing each element with the deviation 
and then consequently multiplying the elements in the K-matrix with the same value. 
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Example: Transport aircraft 
As an example the characteristics for transport aircraft is used. The table below some aircraft with 
some of their characteristics. Note that there are both functional characteristic, such as range and 
number of passengers as well as design parameters such as wing area, wingspan and thrust.  
 
Table 1. Civil aircraft 

Name PAX
range 
[km]

empty 
[kg]

maxTOW 
[kg]

maxFuel 
[l]

thrust 
[kN]

wing area 
[m^2] span [m] length [m]

Cost [M 
USD]

ER145LR 50 2873 11440 22000 6484 67 51.2 20.04 29.87 47
CRJ-200ER 50 3045 14016 24041 6489 78 48.35 21.21 26.77 30
CRJ-900ER 90 2376 21433 37421 8887 119 70.61 24.85 36.4 38.93
ERJ195 106 4260 28970 50790 12971 165 92.5 28.7 38.6 47
B737600 130 4440 36400 65500 26020 174 105.4 35.8 37 93.3
A320 164 6100 42600 78000 30190 240 122.6 35.8 37.57 97
B767300ER 269 11090 90010 186880 91400 552 283 47.6 54.9 185.8
A330300 335 11300 124500 242000 139090 632 361.6 60.3 63.7 253.7
A340500 359 16060 170500 372000 215260 1040 439.4 65.5 67.9 261.8
B777ER 400 13600 167000 351000 181283 1024 436 64.8 73.9 320.2
B747400 565 13450 184600 396890 216840 1104 525 64.6 70.6 260
A380800 644 10400 252200 590000 323546 1360 845 79.75 72.73 260 
 
In order to have a better model structure the SVD analysis is made on the logarithm of the original 
data. The data is also centred around the mean value. 
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The result is a model of the form 
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Where s is the SVD vector. The result from the model is then manipulated to get back 
to the original domain. 

1
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=                  (12) 

The selection of base for the log is somewhat arbitrary. Using two means that the interval -1 to 1 
corresponds to a difference of a factor four. This is here considered as a reasonable compromise that 
mean that the left column in the K-matrix is around one. It does, however, have any other 
consequence. The table below shows the result from an SVD analysis. The K-matrix has been 
normalized, so the deviation of the SVD parameters of the datasets should be one.   Here the values 
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of the transformation matrix K are colour coded to highlight the significant values. Apparently the 
first column is totally dominant. 
 
Table 2. SVD model of civil aircraft. 

Rel error ER145LR Estimate AdjustedResult Average K-matrix SVD variabw-diagonaresidual
PAX 0.00 50.00 50.00 1.70 -0.56 2.26 0.357 -0.013 0.040 -0.005 0.031 -0.014 0.000 -0.003 0.002 0.000 0.000 -1.45 4.43 6.37
range [km] 0.00 2873.00 2872.97 3.46 -0.37 3.83 0.262 0.030 -0.079 -0.022 0.002 -0.008 -0.003 -0.006 0.000 0.000 0.000 -0.77 1.34 0.48
empty [kg] 0.00 11440.00 11439.88 4.06 -0.72 4.77 0.432 0.039 0.014 -0.009 0.006 0.014 0.002 -0.006 -0.003 0.002 -0.001 -0.61 0.37 0.14
maxTOW [kg] 0.00 22000.00 21999.76 4.34 -0.73 5.07 0.465 0.060 0.012 -0.002 -0.005 0.005 -0.002 0.004 0.000 -0.003 -0.001 1.12 0.20 0.14
maxFuel [l] 0.00 6483.75 6483.69 3.81 -0.87 4.68 0.591 0.083 -0.026 0.032 -0.001 0.003 0.000 0.002 0.004 0.001 0.000 -1.67 0.16 0.12
thrust [kN] 0.00 66.60 66.60 1.82 -0.69 2.51 0.444 0.002 0.010 -0.032 -0.002 0.005 -0.004 0.009 0.001 0.001 0.001 -1.68 0.11 0.07
wingarea [m^2] 0.00 51.20 51.20 1.71 -0.57 2.28 0.388 0.078 0.020 0.011 -0.019 -0.017 -0.004 -0.001 -0.004 0.000 0.000 0.22 0.09 0.02
span [m] 0.00 20.04 20.04 1.30 -0.31 1.61 0.193 0.022 0.003 0.010 0.003 0.011 0.002 -0.009 -0.001 -0.002 0.001 0.34 0.07 0.02
length [m] 0.00 29.87 29.87 1.48 -0.20 1.68 0.147 0.010 0.006 -0.012 -0.014 -0.004 0.022 -0.001 0.002 0.000 0.000 1.03 0.03 0.01
Cost [M USD] 0.00 47.00 47.00 1.67 -0.28 1.96 0.391 -0.342 -0.010 0.009 -0.003 0.000 0.001 0.001 -0.001 0.000 0.000 -0.90 0.02 0.01
year 0.00 97.00 97.00 1.99 0.03 1.95 0.006 -0.050 0.030 -0.011 -0.021 0.000 -0.008 -0.010 0.005 0.000 0.000 -0.07 0.01 0.00

0.00  
This is a model where the SVD-parameters can be used to define an aircraft. It is a model that can be 
used e.g. to optimize an aircraft for a specific kind of mission, e.g. payload and range.  
Looking at the diagonal element in the w- matrix the relative importance of the SVD-parameters can 
be studied. 
 

 
Figure 1. The influence of the SVD parameters. 

 
It is remarkable how quickly the importance of SVD-parameters tapers off. Here already the second 
element have less than 10% of the first element. This means that even only one parameter can give a 
rather good estimate of the characteristics. There is also a column of residuals. This column represents 
the maximum relative error for any attribute when sequentially setting the SVD- variables to zero 
starting from the bottom, for this particular example (Embraer ER-145 LR). Hence, with two 
parameters all attributes of the aircraft will be modelled with an accuracy of less than 15%, and with 
more variables the influence of other parameters is probably within the accuracy of the data. It should 
be noted that the largest aircraft is one order of magnitude larger than the smallest (the ER-145) and 
that this ER-145 represents an extreme.  
 
Looking at the transfer matrix, K, it can be see that the greatest influence of the second SVD parameter 
is on passengers and range. This implies that the two requirements driving the design is these two. 
Considering that other requirements are more or less the same for all aircraft the consistency is not to 
surprising, since they have been optimised towards more or less the same objectives. 
 
MODELLING OF CIVIL AERO ENGINES. 
One example of a component that is very useful to have accurate models of also at the conceptual 
design stage is the engine. A database of more than 400 civil aero engines was assembled from 
datasheets and various sources. The result is a model that can predict the relation between geometrical 
dimension, diameter and length, bypass ratio, mass, and thrust and specific fuel consumption. 
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Figure 2. Civil aero Engine. 

 
 
Table 3. SVD model for civil aircraft engines. 
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Bpr+1 6.10 0.79 0.12 0.67 0.106 -0.208 0.011 -0.028 0.011 0.001 1.11 16.17
T [kn] 305.15 2.48 0.54 1.94 0.483 0.025 -0.025 -0.008 0.000 -0.029 0.02 5.38
Sfc [1/hr] 0.40 -0.40 -0.06 -0.34 -0.074 0.101 -0.011 -0.056 0.000 0.008 -0.32 1.81
w [kg] 5636.89 3.75 0.51 3.24 0.463 0.042 0.004 0.008 0.023 0.026 -0.33 1.41
d [m] 2.72 0.43 0.25 0.18 0.213 -0.042 -0.016 0.000 -0.046 0.016 -0.15 1.20
l [m] 4.14 0.62 0.15 0.46 0.158 0.042 0.074 -0.007 -0.013 -0.007 0.16 0.96 
 
 

 
Figure 3. The influence of the SVD parameters. 

 
It can be noted that the two first SVD parameters dominates. This can be understood in such a way 
that in addition to size there is also the bypass ratio that is a major design parameter that strongly 
influence the properties for an engine. (The sorting of the diagonal elements in the used algorithm 
has some issue). 
 
Since the two first parameters are dominant a reduced model base on this is: 
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Here we have also introduced 10 is
iS =  Varying s between -1 and 1 means that S would vary between 

0.1 and 10, to stay within the standard deviation of the dataset. Note that setting both S to one means 
that the average engine is obtained. 
 
MODELLING OF MILITARY AIRCRAFT. ESTIMATION WITH LIMITED DATA.   
Using open data, the following table of characteristics of military aircraft has been established. 
These data are not as exact as would be desirable but can still be used to build a statistical model 
of military aircraft. Since the difference in maxTOW and empty weight can be distributed 
differently between payload and fuel, the quotient Range/max (internal) fuel has been used 
instead. 
 
Table 4. Data of some military aircraft. 

Name

Service 
ceiling 
[m]

Max 
speed 
(Mach)

empty 
[kg]

maxTOW 
[kg]

Range/ma
xFuel

Max 
thrust 
[kN]

wingarea 
[m^2] span [m]

length 
[m]

Stealth 
(1=no, 
2=yes)

Typhoon 19000 2.00 10000 21000 0.925 180.0 51.2 10.5 15.96 1
Rafale C 19810 2.00 9060 15060 0.512911 174.0 46 10.9 15.3 1
PAK FA 20000 2.30 18000 35000 0.339806 334.0 78.8 13.95 19.8 2
BAE Hawk 200 15250 0.84 4128 9101 0.655882 26.0 16.69 9.39 11.38 1
F-5E 15800 1.45 4349 11214 0.438549 44.4 17.28 8.13 14.5 1
L-159 13200 0.76 4350 8000 1.01225 28.2 18.8 9.54 12.72 1
M-346 14716 0.86 4610 9500 0.9905 28.0 23.52 9.72 11.49 1
Mitsubishi F-2A 18000 2.00 9527 22100 0.137139 131.0 34.84 11.13 15.52 1
KAI T-50 14630 1.50 6470 12300 0.86093 78.7 23.69 9.45 13.4 1
Atlas Cheetah C 17000 2.20 6600 13700 0.379456 71.0 35 8.22 15.55 1
Mirage 2000 17060 2.20 7500 17000 0.338131 95.1 41 9.13 14.36 1
F-15C 19810 2.50 12975 30845 0.747148 212.0 56.48 13.05 19.43 1
Mig 29 18013 2.40 10900 20000 0.408571 184.4 38 11.36 17.32 1
Su 27S 19000 2.35 16380 23140 0.297872 245.2 62.04 14.7 21.94 1
J-10 18000 2.20 9750 19277 0.244444 130.0 39 9.75 15.49 1
JA 37 18000 2.10 9500 20000 0.5 125.0 46 10.6 16.4 1
J 35F 18000 2.20 7425 11914 0.558036 78.4 49.22 9.42 15.35 1
MIG-31 20600 2.83 21820 46200 0.459025 304.0 61.6 22.69 22.69 1
F-35A 18288 1.70 13199 31800 0.264853 191.0 42.7 10.7 15.4 2
F-22 20000 2.25 19700 38000 0.207317 312.0 78 13.56 18.9 2
JF-17 16920 1.80 6586 12500 0.866809 84.6 24.4 9.45 14.93 1
Gripen C 15240 2.00 6620 12700 0.704846 80.0 30 8.4 14.1 1
F-16C Block 50 15240 2.00 8495 19200 0.421452 127.0 27.88 9.45 15.03 1 
 
Creating a SVD model in the same way as before, without using the F-16 data it is possible to see 
how well the model can predict the characteristics of the F-16 given the known wing area, span, 
length, engine thrust and indicating stealth or not. The values for the SVD variables are found using 
a solver so that the five first SVD parameters are adjusted to satisfy these five equality constraints. In 
addition there are constraints on the SVD variables to be within -2, and 2. This corresponds to be 
within two sigma of the data set, which ensures that the solution is not outside the data set. This yields 
an estimation that is better than 10% in all aspects. The maxTOW has the highest deviation (9%). It 
should be emphasized that this may as well be due to inadequate data. Also the solver was not able 
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to satisfy all the equality constraints so that length has an error of 3%. 
 
Table 5. SVD model of military aircraft. 
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Service ceiling [m] 0.13 15240 17190 4.24 -0.01 4.24 -0.047 0.004 -0.006 0.001 -0.004 0.001 -0.006 -0.007 0.016 0.005 0.04 2.45 0.67
Max speed (Mach) 0.07 2.00 2.14 0.33 0.07 0.26 -0.129 0.007 -0.078 0.005 0.006 0.025 0.014 0.001 -0.001 0.007 -0.20 0.94 0.34
empty [kg] 0.07 8495 7922 3.90 -0.05 3.95 -0.206 0.020 0.025 -0.014 -0.010 -0.006 0.009 -0.007 -0.012 0.002 -0.83 0.55 0.35
maxTOW [kg] 0.09 19200 17407 4.24 -0.01 4.25 -0.200 0.005 0.038 -0.025 0.011 0.036 -0.014 0.001 0.000 -0.003 -0.37 0.40 0.19
Range/maxFuel 0.07 0.42 0.45 -0.35 -0.02 -0.32 0.141 0.184 0.008 0.007 0.007 0.006 0.001 0.000 0.000 0.000 2.00 0.34 0.06
Max thrust [kN] 0.00 127 127.00 2.10 0.06 2.05 -0.325 0.039 -0.016 0.010 0.035 -0.025 -0.006 0.002 0.002 -0.001 0.00 0.25 0.06
wingarea [m^2] 0.00 27.88 27.88 1.45 -0.13 1.58 -0.181 0.030 -0.006 0.038 -0.054 0.002 -0.008 0.002 0.000 -0.002 0.00 0.17 0.06
span [m] 0.00 9.45 9.45 0.98 -0.06 1.03 -0.074 0.026 0.029 -0.047 -0.020 -0.009 0.009 0.005 0.005 0.009 0.00 0.06 0.06
length [m] 0.03 15.03 15.48 1.19 -0.01 1.20 -0.069 0.013 -0.007 -0.016 -0.007 0.000 0.019 0.000 0.007 -0.015 0.00 0.10 0.04
Stealth (1=no, 2=ye 0.00 1 1.00 0.00 -0.04 0.04 -0.053 -0.021 0.067 0.049 0.015 0.008 0.016 0.001 0.003 0.003 0.00 0.09 0.00

0.13  
 
DISCUSSION AND CONCLUSIONS 
It has been demonstrated that Singular Value Decomposition can be an accurate and very valuable 
tool for a range of application, from establishing simple models for system optimisation, modelling 
subsystem to estimate system characteristics based on incomplete data. This is highly useful in 
conceptual and in preliminary design, where complete knowledge is not yet available. It can also be 
useful in even earlier stages, e.g. when studying System of System scenarios, where very simple 
models are needed to assess usefulness of different combinations of actors in an efficient way. In this 
way it can also be a tool to defined requirements, since very simple models can be used to study the 
impact of different requirements on the design. 
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