

Experimental evaluation of the contribution of adding a motion system to an EDS

Anderson. H. Moreira, Diego. H. Arjoni, Rodrigo M. Nicola, Edgar Thomaz, <u>Emília Villani</u>, L. Gonzaga Trabasso

- ITA Aeronautics Institute of Technology
- Engineering school from Brazilian Air Force
- Located in the Brazilian aerospace cluster, in São José dos Campos

ITA

Introduction

Introduction

Flight simulator

Cheaper and safer when compared to flight campaigns

Flight simulator with high degree of fidelity

High quality visual system

Similar cockpit interface

Motion platform

High cost!

SIVOR Project

Flight simulator based on industrial robot

- Larger workspace when compared with Stewart platform
- Low cost, easily adapted to different aircrafts

APPLICATIONS

- Use as EDS at early stage of aircraft development (e.g. design of fly-by-wire control laws)
- Train pilots in a high fidelity platform, allowing the execution of high risk maneuvers

SIVOR Project

SIVOR under development High degree of fidelity

FAPESP

SIVOR Project

SIVOR preliminary version

Motion platform:

- KUKA robot KR500-2
 - Payload: 500 kg
 - Maximum reach: 2826 mm

Inceptors:

- □ Saitek[™] X52 Pro Flight System
 - Throttle + sidestick + rudder pedals
- Display:
 - □ Full HD LCD TV 50"
 - □ Visual system is rendered by XPlane 10

Washout Filter

From the 'infinite' aircraft workspace to the finite robot envelope

Washout Filter

The Problem

How can we **evaluate** the contribution of the **motion** system to an EDS in an **objective** way?

Part 1: FOQA derived

maneuvers

Session C9, Wed 12, 9:00 Part 2: Maneuvers with high compensation

The Experiment

Experienced pilots

Three different flight plans:

Landing

Offset landing

Stall recovery

High-gain maneuvers:

High degree of pilot compensation

Experimental Procedure

Landing

Experimental Procedure

Offset landing

Experimental Procedure

Recovery from stall

Measured variables

Manoeuvre	Variable Name	Behavioural Parameter
Landing	CLand	Workload
Offset landing	COLand	Workload
Recovery from	CStall	Workload
stall	PStall	Precision

Workload: integral of side stick position

Precision: altitude loss

Statistical Analysis

$$V_{ij} = \mu + M_i + \beta_j + e_{ij}$$

where:

- V_{ij} : Output value: workload or precision.
- μ : General output mean
- *M_i*: Simulation mode variance
- β_i : Pilot block variance
- e_{ij} : Random error variance

Results and Discussions

Results

C Stall

Mode

Pstall

Mode

20

Results

ANOVA I	results	of ı	vorkload	on	offset	landing
---------	---------	------	----------	----	--------	---------

	COland - Offset Landing Workload					
	Df	Sum Sq	Mean Sq	F-Value	Pr (> F)	
\mathbf{M}	1	9,73	9,726	3,857	0.0697	
Р	2	30,96	15,481	6,139		
Residuals	14	35,31	2,522			

MOTION IS SIGNIFICANT

	AN	OVA results	of workload o	on landing	
		Cland - La	anding Worl	kload	
	Df	Sum Sq	Mean Sq	F-Value	Pr (>F)
\mathbf{M}	1	3,023	3,023	4,941	0.0432
Р	2	31,12	15,561	25,43	
Residuals	14	8,566	0,612		

Results

Dstall - Precision on Stall Recovery						
	Df	Sum Sq	Mean Sq	F-Value	Pr (> F)	
\mathbf{M}	1	40	40	0,01	0,9205	
Р	2	55964	27982	7,28		
Residuals	14	53812	3844			

MOTION IS NOT SIGNIFICANT

	ANOV	A results of	workload on s	tall recovery	
	Cs	tall – Stall	Recovery W	orkload	
	Df	Sum Sq	Mean Sq	F-Value	Pr (>F)
\mathbf{M}	1	0,89	0,886	1,555	0,238
Р	2	38,64	19,322	33,89	
Residuals	11	6,27	0,57		

Significance of the motion platform addition:

Landing

Offset Landing

Tendency of workload increasing

No significance on stall recovery

Non-representative dynamic model of the aircraft

Tendency of the relevance in the addition of motion

□ Not enough data to make a definitive claim

Future works:

Extension of the testing procedures

Including other manoeuvres

Implementing the avionics in the pilot's control panel

Installing a control load system

Thank you!

Questions?