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The EDA project LECoLoS

• Leading Edge fluidic flow Control of Low Signature UCAV

• Second Joint Investment Programme on Innovative Concepts and Emerging
Technologies (JIP-ICET2)

• Started 2015-03-16, duration 24 months, ~30 MM

• Budget 780 k€, EDA contribution 650 k€ (83%)

• Partners:

• ONERA - Experimentally evaluate LE fluidic control

• FOI - Numerically design fluidic LE control and validate experimental result

• PFB (Plastiques Façonnés du Béthunois) - Manufacturing of LE inserts

• Follow work done in NATO STO AVT-161, 201
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Previous work by ONERA on mechanical slat

Original pitch dip

Pitch dip eliminated

Result from NATO AVT-201 experiment
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The ONERA SACCON geometry

53°

bref=1.0m

cref=
0.311m

cr=
0.689m

MRP=0.390m

Sref=0.3255m2Short slat
115 mm
at x/cr=0.326
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The flow solver M-Edge

 Developed at FOI since 1997

 Node centered, finite volume flow solver for the compressible Euler
and Navier-Stokes

 Steady state and time dependent solutions on unstructured grids

 Dual mesh, fully parallel, high efficiency

 Functionalities:

- Aeroelastic capabilities

- Many turbulence models

- Models for flow control, inlet distortion analysis

- Adjoint solver for shape optimization

- Coupling to transition prediction tools

 Enable implementation of unique capabilities
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The FOI mesh

• 7 meshes from 4 to 70 million nodes

• 96 surface patches at the LE

• Slot/patch: 1x50 mm

• Half span only



7

Aerospace Technology Congress, October 11-12, Solna, Sweden



8

Aerospace Technology Congress, October 11-12, Solna, Sweden



9

Aerospace Technology Congress, October 11-12, Solna, Sweden



10

Aerospace Technology Congress, October 11-12, Solna, Sweden



11

Aerospace Technology Congress, October 11-12, Solna, Sweden



12

Aerospace Technology Congress, October 11-12, Solna, Sweden



13

Aerospace Technology Congress, October 11-12, Solna, Sweden



14

Aerospace Technology Congress, October 11-12, Solna, Sweden



15

Aerospace Technology Congress, October 11-12, Solna, Sweden



16

Aerospace Technology Congress, October 11-12, Solna, Sweden



17

Aerospace Technology Congress, October 11-12, Solna, Sweden



18

Aerospace Technology Congress, October 11-12, Solna, Sweden



19

Aerospace Technology Congress, October 11-12, Solna, Sweden

Establish reference without any control devices
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Evaluation of mesh and numerical method

The URANS method
looked appropriate but …

Large
oscillations
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The computational method for jets

• Time-dep RANS

• Implicit dual time
stepping

• Long time-step

• ∆t=0.002s (15% of 
root chord)

• 40 inner sub-
iterations

• Almost 30 flow
passes to reach a
converged solution
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Find optimum jet location at AoA=15
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Optimal position of jet at AoA=15

No jet Jet 100m/s
Slot 10:3
x/cr=0.53

Cμ~0.001
Mass flow=5g/s
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Pitching moment contribution

No jet Jet 100m/s
Slot 10:3
x/cr=0.53

V=50 m/s, AoA=15°
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Find optimum jet location at AoA=17
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Optimal results of jet 11:3 at AoA=17

No jet Jet 100m/s
Slot 11:3
x/cr=0.59

Cμ~0.001
Mass flow=5g/s
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Optimal results of jet 11:3 at AoA=17

No jet Jet 100m/s
Slot 11:3
x/cr=0.59



28

Aerospace Technology Congress, October 11-12, Solna, Sweden

Effect on pitching moment with a jet at slot 10:3
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Variation of jet location around LE at AoA=15
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Variation of jet azimuthal direction at AoA=15
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Variation of jet angle at LE
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Evaluation of jet speed/mass flow rate
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Swedish patent #301089 from 1966

Vortex splitting plates

SAAB J35 Draken
Torsten Örnberg
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Next phase

• Wind tunnel tests planned for fall 2016 at ONERA, Lille L1
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Conclusions LECoLoS

• Adding a jet at the leading edge reduces the pitching moment dip found
around AoA=15 degrees for the SACCON

• An optimal location of the jet along the leading edge has been found

• The effect of variation of the jet direction relative the leading edge and the
mass flow or jet velocity has been assessed

• Time dependent RANS simulation was needed with at least 15 full flow
past to reach a stable solution

• The physical effect of the jet is to initiate a split of a larger vortex into
smaller and thus distributing the load onto the surface


