Knowledge-based Flight Control Sysem and Control Surfaces Integration in RAPID

Raghu Chaitanya Munjulury, Ines Escolano Andres, Alejandro Diaz Puebla, Petter Krus

Linköping University, SE-58183, Linköping, Sweden

Agenda

- Introduction
 - Framework
- Objective
- Flight Control System Integration
 - Actuator Sizing
- Control Surfacecs Integration
- Conclusions
- Future work

Knowledge-Based Integrated Aircraft Conceptual Design

Knowledge-Based Geometry Design

Knowledge-Based Geometry Design

Framework Distribution

Objective

- To investigate the early design stages to define the flight control system integration.
- To develop knowledge-based CAD models of different types of flaps and their integration in RAPID

Flight Control System Integration

- Closely related to the hydraulic system
- Important dependency on the aircraft definition
- Its definition affects other systems solutions

Flight Control System Integration

- Simplifications and Assumptions
 - Systems symmetry
 - Valves omission
 - Positioning of the flight control system
 - Flight control system
 - Routing
 - Hydraulic Power Assembly
 - Geometry simplicity

Actuation Systems

- Hydraulic System main components
 - Pump
 - Actuators
 - Fluid
 - pipes, filters and valves
 - Tank
- Other Systems
 - Accumulators
 - PTU
 - RAT
 - APU

Flight Control System Integration

	Hydraulic	Circuit Basic Components
NAME	QUANTITY	FUNCTION
Hydraulic Pump	2/system	It generates the hydraulic pressure which will power the actuators in the control surfaces.
Hydraulic Tank (Reservoir)	1/system	It storages the hydraulic fluid which transmits power within the circuit.
Regulating valve of the pump	2/system	It regulates the hydraulic fluid flow.
Hydraulic Accumulator	1/system	It storages hydraulic fluid which will be used in case of emergencies and peak performance.
Hydraulic conductors	N/A	They transfer the hydraulic fluid between the components of the circuit.
APU	1	It generates the hydraulic pressure which will power the actuators in the control surfaces.

Flight Control System Integration

Power and Control Units				
NAME	QUANTITY	FUNCTION		
ARTCU	3	Deflection control unit.		
Power Unit	1/actuators path	It powers a set of actuators.		
Actuator Drive Assembly	1/actuator	It controls a specific actuator.		
Electric Drive Unit	1	It powers slats rotary actuator.		

Hydraulic Actuators				
NAME	QUANTITY	FUNCTION		
Slats	1/surface	Rotary actuator which extends slats in the leading edge.		
Ailerons	1/surface	It deflects ailerons' control surface.		
Elevators	1/surface	It deflects elevators' control surface.		
Rudder	1/surface	It deflects rudder's control surface.		
Flaps	1/surface	It deflects flaps' control surface.		
Spoilers	1/surface	It deflects spoilers' control surface.		

Sizing - EHA

- Actuators based on an electric motor driven pump connected to a hydro-cylinder
- 5 main components: hydraulic cylinder, pump, motor, accumulator and power electronics
- Power electronics and accumulator size determined by their cooling surface, being considered as a cuboid
- It is assumed that motor and pump are on the same axis parallel to the cylinder

Procedure (Main inputs: Fact & Mcontrolsurface)

- $Arod = \frac{F}{Pn}$, Pn: max allowable stress in the material
- $drod^2 = \frac{4}{\pi}Arod$
- $dpiston = \sqrt{drod^2 + \frac{4M}{\pi m \, pmaxsystem \, r \cos(\frac{\varphi}{2})}};$
- Apiston = $\frac{\pi}{4}$ (dpiston²)
- $Qnom = Vn \ Apiston$; Qnom: max required flow rate,

Vn: max loaded velocity)

• $Vg = \frac{Qnom}{n_{nom}}$; Vg : Volumetric displacement of the pump,

 $n_{\mbox{\scriptsize nom}};$ nominal speed of the motor

• $au = \frac{Pmotor}{n_{nom}}$; au: Nominal torque of the motor,

Pmotor: required power

Sizing - EHA

• The previous values and the table below (estimated statistically) allow to have a preliminary sizing of an EHA, depending on the value of the constants. With the dimensions of existing EHAs components it is possible to define those values.

Component	Parameters	Dimension Estimate
Cylinder	piston diameter d_Z ,	$h_{Zyl} \approx k_0 + k_1 d_Z$
	stop-to-stop stroke	$b_{Zyl} pprox k_2 + k_3 rac{d_Z^2}{h_{Zyl}}$
	$x_{\text{max}} - x_{\text{min}}$	$l_{Zyl} \approx k_4 + k_5 \left(x_{\text{max}} - x_{\text{min}} \right)$
Axial piston pump	geometric displacement $V_{g \max}$,	$l_P \approx k_0 \lambda^{\frac{2}{3}} \sqrt[3]{1 + k_1 V_g}$
	typical $\frac{l_P}{\sqrt{A_P}} =: \lambda_P, A_P = b_P \cdot h_P$	$d_P pprox 2\sqrt{rac{A_P}{\pi}} = rac{2}{\sqrt{\pi}} rac{l_P}{\lambda_P}$
AC induction /	nominal torque	$V_{mot} = \frac{\pi}{4} d_{mot}^2 l_{mot}$
brushless DC motor	$M_{mot,nom} := \frac{P_{mot,cont}}{n_{mot,max}}$	$V_{mot} = \frac{\pi}{4} d_{mot}^2 l_{mot}$ $V_{mot} \approx k_0 M_{mot,nom}^{k_1}$

Sizing - EHA

HINGE MOMENT(Nm)	Fmax (kN) (Actuator)	Ashaft (m^2) Dsh	haft (m)	Qmax (m^3/s) (Flow Rate)	
15	353	0,002199377	0,052918179	0,000892223	
	Max allowable stress (MPa) (shaft material)				
m FACTOR	160,5				
1		Dpiston (m) Api	iston (m^2)	Vg (m^3/rad) (Pump Displacement)	
		0,111181906	0,009708634	2,84004E-06	
pmax sys (MPa)					
20,68					
r (Actuator hinge arm) (m)					
0,1					
Swept angle (deg)	Stroke (Xmax-Xmin) (m)				
30	0,1				
	k0				
Vmax (m/s) (max loaded velocity)	0,2	Cylinder		Pump	
0,0919	k1	hc (m) lc ((m)	lp (m)	dp (m)
	1,3	0,344536478	0,5	0,108576838	0,306289606
n (rpm) Nominal speed (motor)	k4				
3000	0,3				
	k5				
P max nominal (kW) (motor)	2				
2,23	λ				
	0,4				
M (Nm) (Torque motor)					
7,098310462					

Sizing - EMA

- Actuator where a mechanical gearing is used to couple an electric motor to a flight control surface.
- Aerospace EMA major components: Brushless motor (cylindrical or annular); Gearbox, Spur gear or Cycloidal reducer; ball or roller screw, Spherical, axial or radial load bearing
- Main design model: Scaling laws

Scaling Laws

- Scaling laws evaluates the effect of varying parameters of a component compared to a known reference
- Scaling ratio of a paremeter: $x^* = x/x_{ref}$
- 2 main assumptions:
 - All material properties are identical to those of the reference
 - The ratio of all the lengths of the considered element to all the lengths of the reference component is constant
- Parameters representing geometric quantities can be directly obtained from the assumption of geometric similarity: $V^*=l^{*3}$, $M^*=l^{*3}$

Sizing - EMA

- For mechanical components
 - F*=l*2
 - $T^* = 1^{*3}$

Thus the variation of the diameter, length or mas can be expressed as a function of the transmitted force F^* or torque T^*

Established scaling laws for bearings and ball and roller screws.

Parameter	Unit	Rolling bearings	Spherical bearing	Ball and roller screws	
Furumeter Chii		(incl. end-bearings)		(nut and screw)	
Definition paramet	ter(s)	Dynamic load capacity Nominal static load		Nominal output force	
		C_{nom} (N)	C_0 (N)	F_{nom} (N)	
Integration parame	eters				
Length, diameter, width and depth	m	$l^* = C_{nom}^{*1/2}$	$l^* = C_0^{*1/2}$	$l^* = F_{nom}^{*1/2} \text{ (diameter)}$	
Inner diameter	m	$d_{in} = d_{ext} - (F^*)^{1/2} \Delta d_{ref}$	$d_{in} = d_{ext} - (F^*)^{1/2} \Delta d_{ref}$	-	
Mass	Kg	$M^* = C_{nom}^{*3/2}$	$M^* = C_0^{*3/2}$	$M^* = F_{nom}^{*3/2} $ (nut)	
Mass per unit length	kg/m	-	-	$M_l^* = F_{nom}^* \text{ (screw)}$	

Established scaling laws for the speed reducers.

		Speed reducer - 1 stage	Speed reducer -n stages
Parameter	Units	Cycloidal, Harmonic Drive	Planetary gearboxes
Definition parameter		Nominal output torque	Nominal output torque (Nm), stage number i
		T_{nom} (Nm) Transmission ratio k	$T_{i,nom}^* = \frac{T_{n_s,nom}^*}{k^{\left(1-\frac{1}{p}\right)\left(1-\frac{i}{n_s}\right)}\eta^{n_s-i}}, i < n_s$
			Total reduction ratio k
Integration parameters			
Length (1) and diameter (d)	M	$d^* = T_{nom}^{*1/3}$	$d_{i}^{*} = T_{i,nom}^{*1/3}$
		$d^* = T_{nom}^{*1/3}$ $l^* = T_{nom}^{*1/3}$	$d_{i}^{*} = T_{i,nom}^{*1/3}$ $l_{i}^{*} = T_{i,nom}^{*1/3}, 1_{i} \ge 1_{i,min}$
Mass	Kg	$M^* = T^*_{nom}$	$M_{i}^{*} = T_{i,nom}^{*}$
			$M_{i}^{*} = T_{i,nom}^{*}$ or $M_{i}^{*} = T_{n_{z},nom}^{*2/3} .l_{i}^{*}$

Established scaling laws for brushless motors

Parameter	Units	Cylindrical motor	Annular motor
Definition parameter Nominal continuous torque	Nm	$T_{em,nom}^* = l^{*3.5}$	$T_{em,nom}^* = l^{*3}$
Operating voltage	V	$U^* = n^* l^*$	$U^* = n^* l^{*3} \omega_{elec, max}^*$
Integration parameters Length and diameter	m	$l^* = T_{em,nom}^{*1/3.5}$	$l^* = T_{em,nom}^{*1/3}$
Mass	kg	$M^* = T_{em,nom}^{*3/3.5}$	$M^* = T_{em,nom}^{*2/3}$

(a) Brushless motor and speed reducer masses as a function of the nominal torque.

$$y^* = x^{*b} \Rightarrow y = \frac{y_{ref}}{x_{ref}^b} x^b \Rightarrow \log(y) = \log\left(\frac{y_{ref}}{x_{ref}^b}\right) + b.\log(x)$$

Actuator Data

				POWER (kW)	(m/s)	VELOCITY	STALL/OUTPUT FORCE (kN)
F-35 (Tandem)	RUDDER	0,0337	41,282	4,82	0,14	0,0919m/s at 62,285kN	56,49
A319/320/321	ELEVATOR	0,0609			0,0609		
	RUDDER	0,109			0,109		
	AILERON	0,043			0,088		
	SPOILER	0,083			0,099		
A330/340	ELEVATOR	0,099			0,119		101,86
	RUDDER	0,157			0,134		93,85
	AILERON	0,083			0,109		165,03
	SPOILER	0,071			0,0609		111,21
F-18	FLAPERON	0,1143	18,8		0,195		59,16
EMA							
F-18	FLAPERON	0,1048	11,8		0,1702		58,72
TRANSPORT	SPOILER	0,152	17,7		0,118		222,4
	3.3.2	-,	/*		-,		,
C-141	AILERON	0,137	15,9		0,118		84,74
Medium Size	Ametek- 117PE101	0,1	6,4		0,133		40

- Diameter	Length Retracted	Length Extended		
(m)	(m)	(m)		
0,1235	0,3835	0,4835		
•				

Flight Control Systems Integration

Flight Control Systems Integration

Control Surfacecs Integration

Plain flap/Aileron

Triple Slotted Flap

Fowler Flap

Split/Zap Flap

Slat

Control surfaces Integration

Conclusion

- Fast realisation of the concept
- To support Conceptual to Preliminary Aircraft Design
- Specialized tool for specialized needs (full CAD env.)
- Coupling to for CFD analysis for all lifting surfaces
- Flexibility level
 - Characteristic parameter
 - It allows to tailor connections between hydraulics systems and flight control surfaces
 - Representation widely used in the industry

Future Work: Simulation Model

Project data

Simulation Model Code

Simulation

Program

Thank You

raghu.chaitanya@liu.se

www.liu.se

