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ABSTRACT 
 
The objective of this work is to determine a dynamic model to represent a long, flexible 
deployable structure, aiming its vibration control. We propose a modeling strategy in order to 
overcome the problems related to the construction of numerical parametric models of 
exploration probes, shaped as long deformed beams with variable cross section, subject to 
self-weight and concentrated loads The proposed modeling strategy consists in finding the 
static large deformation curve of the beam subjected to the pulling cable force. Then, a coarse 
finite elements mesh is adapted to the static deformed shape of the pulled beam, yielding a 
linear model of the dynamic parameters. The modeling strategy is also applied to characterize 
the static and dynamic behaviors of a real beam. The H∞ control methodology is applied to 
the numerical dynamic model in order to suppress the vibration of the flexible beam with 
large deformations. The control strategy design is based on the modal characteristics of the 
structure. The results show that the proposed strategy of combining an analytical model of 
static deformation with a low order finite element model of the solid is an efficient way to 
obtain a convenient dynamic description of the structure.  
 
KEYWORDS: Flexible beams with variable cross sections, Finite Element Method, 
Vibration of Guyed Beams. 
 
INTRODUCTION 
 
The use of long, flexible deployable structures applied in space exploration vehicles in low-
gravity environment applications was the motivation of this work. The advantages of such 
structures are their lightweight and the capability to withstand large displacements without 
exceeding their specified elastic limit (Puig et al. 2010, Tibert 2002 and Pellegrino 2001). 
Space exploration vehicles for example may benefit from the use of a long controllable beam 
manipulator with sensors attached to its end, to reach regions of scientific interest such as 
mountain slopes or the face of steep terrains. The beam´s tip end positioning can be achieved 
by deflecting the flexible structure through lightweight cables instead of heavy actuators, 
which contributes to the weight restriction. Moreover, vibration control of its free end is 
essential for a practical application. The use of cable or tendon as an actuator in the vibration 
control of flexible structures is found in the work of Nudehi (2006), who used a compressive 
buckling-type end load for active vibration control of a cantilever beam. Sohn (2008) used 
shape memory alloy (SMA) wire actuators to control the position and vibration of a flexible 
beam structure. The use of cable tension for active vibration control in frame structures has 



been investigated by Issa (2010). Vibration control of large structures, for example 
suspension brigdes, can also be done using active tendon theory as presented by Preumont 
(2008, 2015, 2016). In this context, the objective of this study is to determine a dynamic 
model for a long and flexible structure, aiming its vibration control.  
 
We propose a modeling strategy in order to overcome the problems of construction of 
numerical parametric models of exploration probes, shaped as long deformed beams with 
variable cross section, subject to self-weight and concentrated loads. The first step in the 
proposed modeling strategy consists in finding the static deformation curve of the beam 
subjected to the pulling cable force.  The differential equations that represents the non-linear 
behavior of beams subject to large deformation can be solved through elliptic integrals 
(Frish–Fay 1962, Timoshenko and Gere 1961, Yau 2010) or numerical approximations 
(Ohtsuki 2001, Shvartsman 2007, Holland et al. 2006, Howell 2001 and Al-Sadder and Al-
Rawi 2006). |In this work, we choose the numerical method (shooting method) to calculate 
the static deformation. Then, a coarse FE mesh is adapted to the static deformed shape of the 
pulled beam, yielding a linear dynamic model from which we calculate the eigen modes and 
eigen frequencies of the structure.  
 
Vibration control of flexible beams can be performed by different control designs. 
Proportional-integral-derivative (PID) controller (Khot 2013), linear quadratic Gaussian 
control (Ma 2015), robust vibration control (Hao 2014)  and H∞ control (Zhang 2013 and 
Sharma 2014) are the  control strategies used to attenuate vibration of such structures. In this 
work, the H∞ control methodology is applied to the numerical dynamic model in order to 
suppress the vibration of the flexible. The control strategy design is based on the modal 
characteristics of the structure.   
 
This paper is presented as follows. Methods introduces the equation representing the elastica 
of the beam with large deformation and variable transversal section, subjected to the action of 
pulling cables. We also presents the basic 3D beam element, which was used to build the FE 
model that are adapted to the static deformed shape of the pulled beam. Numerical and 
experimental results describes the experimental setup, simulation and experimental results, 
as well as the control method used to attenuate the vibrations of the beam. Discussion 
examines the results obtained and draws the relevant conclusions.  
 
 
METHODS 
 
The structure that represents the flexible arm is simplified to a long tapered beam subject to 
the pulling force of the cable. We considered a geometric nonlinear situation since the 
flexible arm is subject to a large deformation. One difficulty is that the pulling force direction 
depends on the tip position, which is the problem unknown. The shooting method is applied 
to solve the differential equation that represents this problem. Once the flexible arm 
deformation is calculated, it´s vibration characteristics is obtained from a FE model meshed 
on the spatial coordinates of the points of the deformed structure. Such characteristics are 
used in the control design. 
 
 
 
 
 



Static Deformation Model 
 

 
Figure 1: Beam with forces 𝑃  

 
The bending moment is proportional to the change in curvature caused by the applied loads, 
according to the classical Bernoulli-Euler theory for the deflection of beams, (Frisch-Fay, 
1962). Such a relation can be written as 
 

𝑀
𝐸𝐼 =

𝑑𝜓
𝑑𝑠 . 

(1) 

 
It can be seen in the figure, also that 
 

sin𝜓 =
𝑑𝑦
𝑑𝑠 , 

(2) 

 
and 
 

cos𝜓  =
𝑑𝑥
𝑑𝑠.  

(3) 

 
The beam is loaded with a concentrated force P, the external moment M and distributed 
weight 𝑤 as shown in Figure 2, leading to the following equation of equilibrium of moments 
 

𝐸𝐼
𝑑𝜓
𝑑𝑠 = 𝑀 +  𝑃 sin𝛽  𝑏! − 𝑥 − 𝑃 cos𝛽! 𝑏! − 𝑦 +  𝑤 𝑥 𝜉 − 𝑥 𝑠 𝑑𝜉

!

!
 , (4) 

 
where 𝑏! and 𝑏! are the horizontal and vertical projections, 𝑠 is the length of a generic 
position in the section, 𝛽 is the inclination angle of force P, 𝜉 is a local length  variable and L 
is the total length. 
 



 
Figure 2: Characteristics of the beam and the distributed load 𝑤 

 
The moment of inertia is defined as 
 

𝐼 = 𝜋
𝐷 𝑠 !

64 , (5) 

 
where 𝐷 is the varying cross section diameter given by 
 

𝐷 𝑠 =  1− 1−
𝐷!
𝐷!

𝑠
𝐿 𝐷!. (6) 

 
Differentiation of the left hand side of Eq.(4) with respect to s, leads to: 
 

𝑑
𝑑𝑠 𝐸𝐼

𝑑𝜓
𝑑𝑠 =

𝐸𝐼
𝐿! 1− ∆𝐷 𝑢 !  

𝑑!𝜓
𝑑𝑢! −

4Δ𝐷
1− Δ𝐷𝑢

𝑑𝜓
𝑑𝑢 , (7) 

 
where 
 

Δ𝐷 =  1−
𝐷!
𝐷!

, (8) 

 
and 

 
𝑢 =

𝑠
𝐿. 

(9) 
 

Differentiation of the right hand side of Eq.(1) with respect to 𝑠 leads to: 
 
𝑑
𝑑𝑠 𝑀 + 𝑃 sin𝛽  𝑏! − 𝑥 − 𝑃 cos𝛽 𝑏! − 𝑦 +  𝑤 𝑥 𝜉 − 𝑥 𝑠 𝑑𝜉

!

!
= Γ! + Γ!, (10) 

 
where  
 

Γ! =  −𝑃 sin 𝛽 − 𝜓 , (11) 



 
and 
 

Γ! = −
𝜌𝜋𝑔𝐿
12 𝐷!! + 𝐷!𝐷! + 𝐷!! − 3𝐷!!𝑢 + 3 𝐷!! − 𝐷!𝐷! 𝑢!

− 𝐷!! − 2𝐷!𝐷! + 𝐷!! 𝑢! . 
(12) 

 
The equilibrium equation of moments  can be finally written by equaling Eq. (7) and (10) as 
 

𝑑!𝜓
𝑑𝑢! −

4Δ𝐷
1− Δ𝐷𝑢

𝑑𝜓
𝑑𝑢 =

𝐿!

𝐸𝐼 1− ∆𝐷 𝑢 ! (Γ! + Γ!) . 
(13) 

 
The boundary conditions are 

 
𝜓!!!  = 0 , (14) 

 
and 

𝑑𝜓
𝑑𝑢 !!!

 =   
𝑑𝜓!
𝑑𝑠

 =  
𝐿
𝐸𝐼!

 𝑀. (15) 

 
The presented method was applied to find the deformed shape of the structure when subject 
to a pulling force of a cable. Based on this geometry, a FE model was meshed in order to find 
the stiffness and mass matrix of the beam and cable. In the next section, the FE model is 
presented. 
 
Finite Elements Model 
 
The theoretical vibration characteristics of the structure were obtained numerically, based on 
the FE model of the structure. 3D beam elements with axial, bending and torsional stiffness 
are employed to represent the mesh the FE model. The pulling cable is represented by linear 
spring elements. The 3D beam elementary stiffness and mass matrix are obtained using the 
Galerkin formulation for the weighted residuals method (Bathe 1996).   
 
In order to find a truss element stiffness and mass matrix, we apply Newton’s second law to 
the truss element and considering it’s weak formulation, we have  
 

𝐼 = 𝜌𝐴
𝜕!𝑢
𝜕𝑡! +

𝜕
𝜕𝑥 𝐴𝐸

𝜕𝑢
𝜕𝑥

!

!
𝜔𝑑𝑥 , (16) 

 
where 𝜌 is density, A is section area, 𝐿  is the element length, 𝜔 is the test function  or shape 
function,  𝑢 is the axial coordinate along 𝑥 axis and 𝑡 is time.  
 
For beam elements, we consider the Euler Bernoulli equation for beam bending. The average 
weight residual of this equation is  
 

𝐼 = 𝜌
𝜕!𝑣
𝜕𝑡! +

𝜕!

𝜕𝑥! 𝐸𝐼
𝜕!𝑣
𝜕𝑥!

!

!
𝜔𝑑𝑥 , (17) 

 



where 𝑣 is the transverse displacement of the beam, 𝐼 is the moment of inertia and 𝐸 is the 
Young Modulus. 
 
The torsion behavior can be computed from Saint Venant torsion problem. Considering it’s 
weak form, we have 
 

𝐼 = 𝜌𝐽
𝜕!𝜃
𝜕𝑡! +

𝜕
𝜕𝑥 𝐺𝐽

𝜕𝜃
𝜕𝑥

!

!
𝜔𝑑𝑥 , (18) 

 
where 𝜃 is the torsion angle along axial direction, G is the shear modulus and 𝐽 is the polar 
second moment of area. 
 
Considering a linear shape function for truss (Equation (19)) and torsion (Equation(20)) 
element, third order polynomial for beam (Equation (21)) element and by integrating the 
matrix terms, we can calculate the element stiffness and mass  matrices.  
 

𝑢 = 𝜔!𝑢! + 𝜔!𝑢! 
where  𝜔! =

!!!
!

  and  𝜔! =
!
!
. (19) 

 
𝑣 = 𝜔!𝑣! + 𝜔!𝜃! + 𝜔!𝑣! + 𝜔!𝜃! 

Where 𝜔! = 1− !!!

!!
+ !!!

!!
 , 𝜔! = 𝑥 − !!!

!
+ !!

!!
 , 𝜔! =

!!!

!!
− !!!

!!
 and 𝜔! = − !!

!
+ !!

!!
 

(20) 

 
𝜃 = 𝜔!𝑢! + 𝜔!𝑢! 

where  𝜔! =
!!!
!

  and  𝜔! =
!
!
. (21) 

 
The 3D beam element can be obtained from the combination of the presented axial, bending 
and torsional stiffness and corresponding inertial behavior. Such element presents 12 degrees 
of freedom (DOF) as described in Eq. 22 and Figure 3. 
 

𝒓!! = 𝑟! 𝑞! 𝑜!      𝜃!! 𝜃!! 𝜃!!    𝑟! 𝑞! 𝑜!      𝜃!! 𝜃!! 𝜃!! . (22) 
 

 
Figure 3: Global coordinate system (XYZ) and element local coordinate system (RQO). 

 
The local coordinates vector 𝒓! , shown in Figure 3, can be transformed into a global 
coordinate system 𝑹!with the relation 



 
𝑹! =  𝐓!  𝒓! (23) 

 
where 𝐓 is the transformation matrix with the angles formed between the local and global 
coordinates. The stiffness and mass matrices are described respectively as 

 
𝐊𝐞 = 𝐓𝐓𝐤𝐞𝐓,  

 (24) 

 𝐌𝐞 = 𝐓𝐓𝐦𝐞𝐓. (25) 
 
The linear beam element mass and stiffness matrices are defined in the element coordinate 
system. In order to represent this element in the global coordinate system, a transformation 
matrix T is used which converts the element's coordinates to the global coordinates system. 
Matrix T is defined, based on the position of the element nodes in the global coordinate 
system. The finite element model of the long probe is modeled with 10 beam elements with 
12 DOF and the cable is modeled as truss element with 2 DOF. The cable stiffness is 
representative only for axial direction.  
 
NUMERICAL AND EXPERIMENTAL RESULTS  
 
The prototype required to validate this methodology should withstand large deformation, 
while its material properties must respond in the linear field. For this purpose, a cantilever 
fiberglass fishing rod is used in order to compare its static large deflection and dynamics 
characteristics to the simplified numerical model. The beam is deformed by the action of a tip 
end pulling cable and a hanging mass, as shown in Figure 4. The physical characteristics of 
the fiberglass beam are presented in Table 1. 
 

Table 1 - Test beam characteristics 
Length Cross section 

diameter 1 
Cross section 

diameter 3 
Modulus of elasticity Density 

0.965 (m) 0.0081 (m) 0.0015 (m) 35 (GPa) 2150 kg m!      
 
Static Deformations 
 
Experimental tests are carried out to validate the static modeling procedure described in 
section Static Deformation Model. The vertical and horizontal deflections of selected points 
on the beam, as shown in Figure 4, were measured with the support of an altimeter, a set-
square and a base. 
 



 
Figure 4: Configuration for the static deflection measurements 

 
The deformed beam configurations are obtained from the pull of a nylon cable attached to the 
free end of the beam. Moreover, the cable is tensioned with the support of five different 
weights and a pulley as shown in Figure 4. The cable origin coordinates are 0.040m 
(horizontal) and -0.233m (vertical) and its stiffness is 1 kN/m. The angle of the traction force 
is defined by the positions of the tip end and cable clamp. A 15 grams accelerometer used to 
obtain the experimental vibration data, works also as an end hanging load as seen in Figure 5. 
 

 
Figure 5: Beam for vibration test with the position used to excite the structure. 

 
The measurements were performed to six different configurations due to six distinct weights, 
as shown in Figure 6. Then, deflections obtained from the experimental analysis and the 
theoretical model were compared, as seen in Figure 7. Results show good agreement between 
experimental measurements and numerical results. 
 



 
Figure 6: Configurations of the beam for different pulling cable tractions. 

 

 
Figure 7: Comparison between numerical and experimental static results. 

 
Dynamic characteristics  
 
Modal analysis techniques were used to validate the dynamic model of the beam described in 
section Finite Element Model. The structure’s natural frequencies were obtained by 
analyzing the frequency response of the system due to an impulse input applied by an impact 
hammer. Moreover, the same modal characteristics are calculated numerically from the mass 
and stiffness matrices of the proposed theoretical model. 
 
The signal sent by the accelerometer is sampled and processed with the support of a Photon+ 
dynamic signal analyzer and the software RT Pro Photon®. The six beam deformed 
configurations described at section Static Deformations (Figure 6) were tested. 
 
Vibration results are also calculated using the finite element model generated for each static 
deformed configuration shown in Figure 6. The theoretical natural frequencies are compared 
with experimentally measured results. Table 2 shows the first ten modes calculated from the 
finite element model. Configurations 1 to 6 (Config1 to Config6 of the Figure 6) correspond 
to the different pulling load conditions. 



 
Table 2 - Natural Frequency calculated theoretically by the finite element method 

 
Modes 

Config1 
(Hz) 

Config2 
(Hz) 

Config3 
(Hz) 

Config4 
(Hz) 

Config5 
(Hz) 

Config6 
(Hz) 

1 4.40 4.42 4.52 4.74 4.97 5.14 
2 4.40* 5.76* 6.52* 6.87* 7.19* 7.44* 
3 16.18* 16.08 15.41 14.48 13.85 13.49 
4 16.21 23.99* 28.80* 28.67* 27.83* 26.91* 
5 42.14* 41.90 40.08 37.71 36.06 35.01 
6 42.22 46.38* 58.91* 63.75* 64.38* 63.28* 
7 82.17* 81.87* 79.35 75.07* 70.84* 68.56* 
8 82.29 81.87 79.41* 75.69 72.82 71.04 
9 136.42* 134.78* 128.15* 122.02* 118.25* 116.60* 
10 136.53 136.07 133.17 128.71 125.24 123.26 

* Vibration modes in the XY plane. 
 

Table 3 - Natural Frequency obtained experimentally 
 

Modes 
Config1 

(Hz) 
Config2 

(Hz) 
Config3 

(Hz) 
Config4 

(Hz) 
Config5 

(Hz) 
Config6 

(Hz) 
1 3.30 2.81 2.81 3.28 3.28 4.06 
2 (i) 6.04 5.68 5.49 6.23 6.41 
3 16.11 12.97 14.28 13.92 15.20 14.80 
4 (ii) 19.59 23.80 25.82 28.02 28.21 
5 44.68 41.38 40.01 37.35 41.56 41.38 
6 (iii) 47.61 53.10 54.11 61.34 61.34 
7 76.17 91.19 86.43 71.50 74.16 71.41 
8 (iv) (iv) (iv) (iv) (iv) (iv) 
9  112.80 120.80 119.92 119.81 115.50 111.30 
10 (v) (v) (v) (v) 125.80 124.40 

 
(i) The first and second vibration modes are very close. 
(ii) Third and fourth vibration modes are very close. 
(iii) The sixth and fifth vibration modes are very close. 
(iv) The seventh and eighth vibration modes are very close. 
(v) The ninth and tenth vibration modes are very close. 
 
Configuration 1 (traction force of 0.0 N), presents two orthogonal vibration modes in plane 
XY and XZ with similar natural frequencies. This can be observed in both theoretical and 
practical calculations shown in Tables 2 and 3, respectively.  This behavior is caused by the 
symmetrical geometry of the circular section of the beam. 
 
Configuration 2 (traction force of 0.980 N) brings a change in the pattern of natural vibration 
modes. Modes 1, 2, 3, 4, 5 and 6 have all distinctive natural frequencies. Modes 1, 3 and 5, 
represent an oscillation in the XZ plane, with greater amplitude on the Z axis. Modes 2, 4 and 
6 display a greater oscillation on the Y axis. Such a behavior can be observed in the 
experimental data of  
 



Table 3. The remaining modes retain similar patterns as observed in configuration 1, where 
two modes have close vibration frequencies in orthogonal planes. The experimental data 
confirms the predicted values of such frequencies. 
 
Configurations 3 to 6 (traction force of 2.015 N to 5. 000 N) are similar to configuration 2 
with respect to the modes and frequencies of vibration 1, 2, 3, 4, 5 and 6. As the traction force 
of the cable increases, modes 7 and 8, 9 and 10 display different frequencies. The 
experimental results of configuration 3 and 4 did not verify such a behavior due to the small 
difference in frequency values. It was possible to observe in configuration 5 and 6, the 
difference of frequencies between modes 9 and 10.  
 
The vibration frequencies obtained by the impact hammer test show good agreement with the 
theoretical results of the numerical model. The validated numerical model is used in a 
numerical simulation control of a flexible structure vibration, shown in the next section. 
 
VIBRATION CONTROL  
 
The vibration control of the flexible structure is presented in this section. The design of an 
H∞ controller is shown and theoretical and experimental results are then compared.  
 
Design of the controller 
 
An H∞ controller is designed to suppress the vibration of the structure. The controlled system 
scheme is shown in Figure 8, where d is the input vector with the disturbance force and n is 
the measurement noise. 
    

 
Figure 8: Block Diagram  

 
System model 
 
The mathematic model of the general system is  
 

𝒗(𝐭) = 𝐀𝒗(𝐭)+ 𝐁!𝒘(𝐭)+ 𝐁!u(𝑡), 
𝐳(𝐭) = 𝐂𝟏𝒗(𝐭)+ 𝐃!!𝒘(𝐭)+𝑫!!u(𝑡), 

(26) 



𝒆(𝐭) = 𝑪𝟐𝒗(𝐭)+𝑫!!𝒘(𝐭)+ 𝐷!!u(𝑡). 
 
where, 𝒗(𝐭) is the state vector, 𝒘(𝐭) is an input vector with the disturbance force, the control 
signal is represented by u(𝑡), input control vector by 𝒆(𝐭) and 𝐳(𝐭) is the performance vector 
that represents the system response signals to be controlled. 𝐀 is comprised from the motor 
and beam dynamic matrices. 𝐁! and 𝐁! are input matrices 𝐂𝟐, 𝐃!" and 𝐷!! are output 
matrices. Matrices 𝐂𝟏, 𝐃!! and 𝑫!!, are chosen to define the desired performance goals. 
 
An AC servo motor and a MINAS 4S driver, configured in torque control mode, is used to 
pull the driving cable. The motor´s model is obtained experimentally using MATLAB’s 
identification tool and a data acquisition board.  
 
The pulling force actuator is defined by the torque of the servomotor and the radius of a 
pulley placed in the motor’s shaft. In practice, the motor has a dead zone. Such a nonlinearity 
is modeled in Simulink diagram blocks, and also used in the design of the controller. 
 
The vibration of the tip of the beam is measured by means of a custom built infrared spring 
displacement sensor, fitted in line with the pulling cable. The sensor’s elastic characteristic is 
included in FE model of the beam and cable. A polynomial expression is experimentally 
built to express the direct relation between force - 𝐹! (N) and voltage - 𝑣! (V), measured in 
the optical displacement sensor. 
 
The dynamic FE model of the beam has the form 
 

𝒙!
𝒙!

= 𝟎 𝐈
−𝐌!!𝐊 −𝐌!𝟏𝐃

𝒙𝟏
𝒙𝟐 + 𝟎

−𝐌!!𝒃!
𝒘(𝐭)+

𝟎
−𝐌!𝟏𝒃!𝒂

f!(t) 

𝒚 𝒕 = 𝟏 𝟎
𝒙𝟏
𝒙𝟐  , 

(27) 

 
where 𝒙 is the state vector, 𝐌 is the mass matrix, 𝐃 is the damping matrix, 𝐊 is the stiffness 
matrix. 𝒃! and 𝒃!𝒂 are n × 1 vectors, comprised of elements either 0 or 1, depending on the 
position of the disturbance input and on the position of the control force input, respectively. 
𝒘(𝐭) is the disturbance force acting on the beam and f!(t) is the force of the cable pulled by 
the actuator. Tip displacement 𝒚 𝒕  is the output signal.  
 
The damping matrix 𝐃 is defined as proportional to stiffness and mass matrix 
 

𝐃 = 𝜎𝐌+ 𝜏𝐊, (28) 
 
where 𝜎 = 1×10!!and 𝜏 = 1×10!!. 
 
Control Design 
 
Schur method is used to calculate the controller gain, based on the state space description of 
the reduced order model of the system. The model is truncated in the first two modes, which 
correspond to the lowest frequencies. Weighting functions are used to emphasize the 
frequency range where the controller must actuate. Low pass and high pass filters are used as 
weighting functions. In the present work, Wu represents the equations of a high pass filter 
which emphasizes the high frequency region of the control effort signal. Wp and Wd 
represents the equations of low pass filters which emphasize the low frequency region of the 



performance signals of system output and disturbance. Figure 9 shows the frequency 
response characteristics of the system and filters. The two lowest frequencies, 36.2rad/s and 
152rad/s, are used to design the controller.  
 

 

 
Figure 9: Set of the weight functions. 

 
The subroutine hinfsyn of MATLAB is used, together with the complete model, to calculate 
the robust controller from the connection of the weight functions. 
 

 
Figure 10: Frequency response of the system with uncontrolled and controlled vibration. 

 
The single values of all system model in open loop and closed loop are presented in Figure 
10. The Robust control can reduce the highest peak of the frequency selected in the reduced 
model. It is possible to see that the frequencies that were not part of the control strategy are 
still present.  
 
The infinite norm of the system without control is 3.8326, while with the action of the 
control, it is minimized to 0.0613. 



 
The control strategy is validated by numerical simulations. The transient response of the 
system in open loop (uncontrolled) and closed loop are shown in Figure 11. Simulation 
results show that the closed loop control attenuates the vibration of the free end of the beam 
in less than 0.5s, as opposed to the uncontrolled movement that lasts beyond the remaining 5 
seconds of the time response observation window. 
 

 
Figure 11: Impulse response in open and closed loop 

 
In the second simulation, the beam’s end is subjected to simultaneous random vibration of 1 
N RMS values in X and Y directions. The resulting vibration response of the beam’s tip 
without control (grey line) and with control actuation (black line) are shown in Figure 12. In 
this case, the vibration levels are reduced to about 20% of the intensity of uncontrolled 
vibrations. 
 

 
Figure 12: System response with uncontrolled and controlled vibration due to a random input 

on the tip of the beam 



The control strategy is validated by a practice test. The next section shows the results of 
system vibration attenuation to a flexible beam with large deformations. 

Experimental  results of the vibration control design 

In the practical test, a cantilever fiberglass fishing rod is used with the following dimensions: 
length of 1.185m and cross section diameter varying from 8,8 10!!𝑚 to  2,0 10!!𝑚. The 
material properties are: Young modulus of 4.4GPa and mass density of 2.000 kg m3 . The 
fishing rod’s free end is pulled by a flexible copper cable attached to a pulley connected to an 
AC servo motor. A MINAS 4S driver is used in a torque control mode in order to drive the 
motor. The motor pulls and releases the tensioned cable to control the movement of the free 
end of the beam, which is measured by an infrared deformation sensor. MATLAB’s Simulink 
platform is used to send the control signal through a NATIONAL INSTRUMENTS PCI-6229 
analog input/output board. The analog input of the data acquisition board receives the output 
signal from the displacement sensor. The displacement signal is filtered, yielding the error 
signal, which is used to calculate the control signal. An illustrative scheme of the 
experimental setup is shown in Figure 13 

 
 
 
 
 
 
 

 
Figure 13: Experimental setup for the vibration control of a flexible beam. 

The experiment consist of applying an external disturbance force at the free end of the beam, 
which is deformed in a specific configuration. The transient response of the system in open 
loop (uncontrolled) situation is shown in Figure 14a. The transient response of the system in 
closed control loop is seen in Figure 14b. The practical experiment shows that the closed loop 
control attenuates the vibration of the free end of the beam in about 1s, as opposed to the 
uncontrolled movement that lasts for more than 4 seconds. Due to different physical and 
electrical sources, we can notice a considerable noise affecting the experimental signals, 
which makes the control actuation less evident when compared to the numerical simulation 
showed in Figure 11. 

Beam 

Sensor Actuator 



  
Figure 14a.: Sensor output signal in open 

loop 
Figure 14b.: Sensor output signal in closed 

loop 
Figure 14: Experimental results to an impulse input. 

 
CONCLUSIONS  
 
This work consisted in modeling a long, lightweight and flexible beam with variable cross 
section, pulled by a cable attached to its tip and base. The model considers also self-weight 
and concentrated loads. The model was verified in static and dynamic experiments. The static 
analytical and experimental deformations of a long beam were verified, for five different 
loads. The comparison between theoretical and practice calculations shown a good 
approximation between the two results, as shown in Figure 7. Moreover, in a dynamic 
experiment, the beam was deformed by action of a pulling cable, under six different loading 
configurations as shown in Table 2 and Table 3. 
 
The results indicate that the proposed strategy of combining an analytical model of static 
deformation with a low order finite element model of the solid is an efficient way to obtain a 
convenient dynamic description of the structure. Results from numerical simulation and 
practice of the vibration control, through an H∞ algorithm show a considerable reduction of 
the beam's tip vibration, when compared to the uncontrolled model. 
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