AEROSPACE TECHNOLOGY CONGRESS 2016 Swedish aerospace technology in a globalised world

October 11-12, 2016 - Solna - Stockholm

AN INVARIANT-BASED DESIGN APPROACH TO CARBON FIBER REINFORCED POLYMER COMPOSITE LAMINATES

J. Daniel Melo and Stephen W. Tsai

Department of Materials Engineering, UFRN, BRAZIL Department of Aeronautics & Astronautics, Stanford University, USA

> Presenter: Carlos A. Cimini Jr. Department Structural Engineering UFMG, BRAZIL

OUTLINE

- Motivation
 - Invariants
 - Trace
 - Master Ply
 - Unit Circle
- Testing and Design with Trace and Unit Circle
 - Testing
 - Designing
- Conclusions

MOTIVATION

- Tsai and Pagano (1967)*:
 - Invariants to describe stiffness transformation equations for ply rotation
- Invariants are not affected by ply orientation
 - Material property
 - Possibility for testing laminates (instead of ply)
 - Reduced number of tests: cheaper and faster
 - Improve optimization

*S.W. Tsai, N.J. Pagano. "Invariant Properties of Composite Materials". *In: Composite Materials Workshop*, S.W. Tsai, J.C. Halpin and N.J. Pagano (Editors), St. Louis, Missouri, 1967, Technomic Publishing Company, 1968, p. 233-253.

UNVERSIDATE FEDERAL DO RIO GRANDE DO NORTE STANFORD A E R O N A U TI C S & A S T R O N A U TI C S

INVARIANT - TRACE

 $Tr[Q] = Q_{xx} + Q_{yy} + 2Q_{ss} = Q_{11} + Q_{22} + 2Q_{66}$

where: Q_{xx} , Q_{yy} , Q_{ss} and Q_{11} , Q_{22} , Q_{66} are the on-axis and off-axis plane stress stiffness components, respectively

Tr
$$[A^*] = A_{11}^* + A_{22}^* + 2A_{66}^*$$
 $[A^*] = \frac{1}{h}[A]$

Tr
$$[D^*] = D_{11}^* + D_{22}^* + 2D_{66}^*$$
 $[D^*] = \frac{12}{h^3}[D]$

- components of [A*] <u>are not</u> dependent on stacking sequence
- components of [D*] <u>are</u> dependent on stacking sequence

- both have the same trace (invariant to stacking sequence)

• Trace is independent of the loading condition (in-plane versus flexural) and stacking sequence (mid-plane symmetric versus asymmetric)

TRACE

Tr [Q] = Tr [A*] = Tr [D*]

Unidirectional ply and in-plane and flexural stiffness components as a function of ply orientation for IM7/8552

MASTER PLY

Trace normalized plane stress stiffness components for various CFRP

Material	E _x	E _v	$\nu_{\rm x}$	Es	Q _{xx} *	Q _{vv} *	Q _{xy} *	Q _{ss} *	Tr
	(GPa)	(GPa)		(GPa)			5		(GPa)
IM6/epoxy	203	11.20	0.32	8.40	0.8791	0.0485	0.0155	0.0362	232
IM7/977-3	191	9.94	0.35	7.79	0.8825	0.0459	0.0161	0.0358	218
T300/5208	181	10.30	0.28	7.17	0.8805	0.0501	0.0140	0.0347	206
IM7/MTM45	175	8.20	0.33	5.50	0.9014	0.0422	0.0139	0.0282	195
T800/Cytec	162	9.00	0.40	5.00	0.8955	0.0497	0.0199	0.0274	183
IM7/8552	159	8.96	0.32	5.50	0.8888	0.0501	0.0160	0.0306	180
T800S/3900	151	8.20	0.33	4.00	0.9034	0.0491	0.0162	0.0238	168
T300/F934	148	9.65	0.30	4.55	0.8878	0.0579	0.0174	0.0271	168
T700 C-Ply 64	141	9.30	0.30	5.80	0.8713	0.0575	0.0172	0.0356	163
AS4/H3501	138	8.96	0.30	7.10	0.8567	0.0556	0.0167	0.0438	162
T650/epoxy	139	9.40	0.32	5.50	0.8724	0.0590	0.0189	0.0343	160
T4708/MR60H	142	7.72	0.34	3.80	0.9029	0.0491	0.0167	0.0240	158
T700/2510	126	8.40	0.31	4.20	0.8827	0.0588	0.0182	0.0292	144
AS4/MTM45	128	7.93	0.30	3.65	0.8939	0.0554	0.0166	0.0253	144
T700 C-Ply 55	121	8.00	0.30	4.70	0.8746	0.0578	0.0173	0.0338	139
Std dev	24.6	1.0	0.029	1.5	0.0132	0.0053	0.0016	0.0056	
Coeff var %	16.0	10.9	9.0	27.2	1.5	10.1	9.6	17.9	
Master ply					0.8849	0.0525	0.0167	0.0313	1.0

Thus, CFRPs have universal trace normalized stiffness constants Trace is the only material property needed to define ply stiffness

Last-ply failure envelopes

a) Tsai-Wu LPF envelopes for T700/2510

b) Omni strain LPF envelope for T700/2510

Ref. Tsai SW and Melo JDD. A unit circle failure criterion for carbon fiber reinforced polymer 7 composites. *Composites Science and Technology* 123 (2016) 71-78.

Omni strain LPF envelopes for two CFRPs based on Tsai-Wu (solid line) and maximum strain (dashed line)

Ref. Tsai SW and Melo JDD. A unit circle failure criterion for carbon fiber reinforced polymer composites. *Composites Science and Technology* 123 (2016) 71-78.

Ref. Tsai SW and Melo JDD. A unit circle failure criterion for carbon fiber reinforced polymer composites. *Composites Science and Technology* 123 (2016) 71-78.

Biaxial failure stress for [0/±45/90]s AS4/3501-6 laminate Experimental data (WWFE) and unit circle failure envelope

Ref. Tsai SW and Melo JDD. A unit circle failure criterion for carbon fiber reinforced polymer composites. *Composites Science and Technology* 123 (2016) 71-78.

TESTING WITH TRACE & UNIT CIRCLE

MASTER PLY

DESIGN AND TESTING

Elastic constants for master ply:Material E_x^* E_y^* v_x E_s^* Master Ply0.87960.05220.31810.0313

TESTING WITH TRACE

UD Coupons
$$Tr = \frac{E_X}{0.8796}$$

Laminates

 $Tr = \frac{E_1^o (laminate)}{E_1^o (trace of normalized master ply)}$

- Once trace is determined, the other elastic parameters are determined based on master ply properties
- The [0] UD coupon is easy to make and quality is usually high because there are no off-axis plies
- Laminates will produce "as-built" properties

TESTING FOR UNIT CIRCLE

UD Coupons

Determine strains-to-failure under tension and compression (only two types of test)

- Same specimen used for the determination of trace

DESIGNING W/ TRACE & UNIT CIRCLE

Ref. Melo JDD, Bi J and Tsai SW. A novel invariant-based design approach to carbon fiber reinforced laminates. *Composite Structures* 159 (2017) 44–52.

<u>Rows</u>: for given material, all laminates have the same trace: 144 GPa for AS4/MTM45 or 218 GPa for IM7/977-3 <u>Columns</u>: same universal [A*] for the same laminate

Longitudinal stiffness of unidirectional ply and five laminates for 15 carbon/polymer materials

Laminate	[0]	[±12.5]	$[0_2/\pm 25]$	$[0, \pm 45]$	$[0_5/\pm 45_2/90]$	[0/±45/90]	Tr
	UD	Angle-ply	Angle-ply (hard)	Angle-ply (har	d) QI (hard)	QI	(GPa)
% [0]	100	0	50	50	50	25	
% [±φ]	0	100	50	50	40	50	
% [90]	0	0	0	0	10	25	
IM6/epoxy	0.874	0.762	0.676	0.504	0.518	0.337	232
IM7/977-3	0.877	0.762	0.675	0.504	0.519	0.337	218
T300/5208	0.877	0.765	0.678	0.504	0.518	0.337	206
IM7/MTM45	0.897	0.772	0.677	0.503	0.523	0.337	195
T800/Cytec	0.888	0.763	0.670	0.496	0.518	0.335	183
IM7/8552	0.884	0.766	0.676	0.501	0.519	0.336	180
T800S/3900	0.898	0.767	0.675	0.496	0.521	0.335	168
T300/F934	0.883	0.773	0.676	0.497	0.517	0.335	168
T700 C-Ply 64	0.866	0.758	0.674	0.500	0.514	0.337	163
AS4/H3501	0.852	0.750	0.672	0.503	0.512	0.338	162
T650/epoxy	0.866	0.757	0.672	0.498	0.514	0.337	160
T4708/MR60H	0.897	0.772	0.675	0.497	0.521	0.335	158
T700/2510	0.877	0.763	0.674	0.496	0.515	0.336	144
AS4/MTM45	0.889	0.770	0.676	0.496	0.518	0.335	144
T700 C-Ply 55	0.869	0.760	0.674	0.499	0.515	0.337	139
Mean	0.880	0.764	0.675	0.500	0.517	0.336	1
Coeff. Var. %	1.50	0.83	0.31	0.66	0.58	0.31	

Problem needs to be solved only once for each laminate

Laminates for 15 carbon/polymer materials

Laminates for 15 carbon/polymer materials

Laminates for 15 carbon/polymer materials

Carpet plot for the longitudinal Young's modulus of a $[\pi/4]$ family using master ply properties.

21

DESIGNING W/ TRACE & UNIT CIRCLE

Open-Hole: FEA analysis (Abaqus®)

Contour plot of failure index (k) for AS4/H3501 $[0/\pm 45/90]_{2S}$ Load {0.25, 0.0, 0.0}

reinforced laminates. *Composite Structures* 159 (2017) 44–52.

DESIGNING W/ TRACE & UNIT CIRCLE

Open-Hole: FEA analysis (Abaqus[®])

Failure indices (k) based on Unit Circle (U-C) and Tsai-Wu (T-W) failure criteria for open hole CFRP laminates under various load cases from FEA analyses

	So	ft	На	rd	Soft	
Load Case {N ₁ , N ₂ , N ₆ } (MN/m)	[0/±45/90] ₂₈		[0 ₅ /±4	15/90]s k	[0/±45 ₃ /90] _s k	
	U-C	T-W	U-C	T-W	U-C	T-W
T700 C-Ply 55 {0.25, 0.0, 0.0} {0.25, 0.1, 0.0} {0.25, -0.1, 0.0} {-0.25, 0.0, 0.0}	0.47 0.41 0.54 0.66	0.42 0.36 0.47 0.68	0.42 0.39 0.67 0.55	0.30 0.25 0.35 0.49	0.75 0.62 0.87 0.92	0.54 0.45 0.63 0.93
AS4/H3501 {0.25, 0.0, 0.0} {0.25, 0.1, 0.0} {0.25, -0.1, 0.0} {-0.25, 0.0, 0.0}	0.78 0.67 0.89 0.78	0.72 0.62 0.82 0.78	0.66 0.60 0.77 0.66	0.53 0.44 0.61 0.57	1.12 0.93 1.30 1.12	0.91 0.76 1.06 1.07
T300/5208 {0.25, 0.0, 0.0} {0.25, 0.1, 0.0} {0.25, -0.1, 0.0} {-0.25, 0.0, 0.0}	0.76 0.65 0.86 0.76	0.69 0.59 0.78 0.77	0.64 0.59 0.75 0.64	0.50 0.42 0.58 0.55	1.09 0.91 1.27 1.09	0.86 0.72 1.00 1.08

In general, a larger failure index is obtained for U-C as compared to T-W

Ref. Melo JDD, Bi J and Tsai SW. A novel invariant-based design approach to carbon fiber reinforced laminates. *Composite Structures* 159 (2017) 44–52.

- Trace and unit circle failure criterion can greatly simplify design and testing of CFRP laminates
 - Design for stiffness can be carried out using master ply properties: Material properties are added later
 - The optimized solution using master ply applies to laminates made of any UD CFRP
 - Trace is the only material property needed as the scaling factor for the determination of strains
 - Testing for trace and unit circle require fewer properties to be measured
- Failure analyses of open hole CFRP laminates indicated that the unit circle is more conservative than Tsai-Wu

THANK YOU!

jdddmelo@gmail.com