Aerospace Technology Congress 2016, Stockholm Session G. Aircraft and spacecraft technology X October 12th, 2016 (11:30 AM to 12:00 PM)

Liquid feedstock plasma spraying -An emerging process for the next generation aircraft engines

Nicolaie Markocsan¹, **Mohit Gupta**¹, Shrikant Joshi¹, Per Nylén¹, Björn Kjellman², Jan Wigren², and Xin-Hai Li³

> ¹University West, Trollhättan, Sweden ²GKN Aerospace, Trollhättan, Sweden ³Siemens Industrial Turbomachinery AB, Finspång, Sweden

> > SIEMENS

IVERSITY WEST Irollhättar

Production Technology Centre (PTC) Trollhättan, Sweden

- A research and innovation centre founded by:
 - Saab Automobile (now NEVS)
 - Volvo Aero Corporation (now GKN Aerospace)
 - o University West
- Good collaboration with industry
- State-of-the-art facilities

Outline

- Motivation
- Thermal Barrier Coatings (TBCs)
- Liquid Feedstock Plasma Spraying Suspension Plasma Spraying (SPS)
 - Functional Performance of SPS TBCs
 - New materials and coating architectures
- Conclusions

TBCs in Gas Turbines

Aeroplanes

RM-12

Courtesy: GKN Aerospace

The CO₂ emissions are increasing!

bound is the 'advanced' technology improvement rate.

UNIVERSITY WEST Trollhättan

🔲 IMPACT, low traffic forecast

5/25 Source: European Aviation Environmental Report 2016

tion Environmental Report 2016

Gas Turbine Efficiency

- 1% increase in engine efficiency of a power plant of 300 MW would result in savings of:
 - more than \$ 2 M/year fuel costs
 - approx. 25 000 t/year reductions in CO₂

6,5€/GJ fuel cost, 8000 h/a

Ref: M. Oechsner, Siemens, TBC Systems for Gas Turbine Applications

- Status and Future Challenges, Turbine Forum, Nice, April 25, 2012

Objective: Improve engine efficiency

- Increase the operating temperature
 - Lower thermal conductivity TBCs => Design of coating microstructure
 - ⇒ Multilayered systems with new materials
- Better durability of TBCs
 - ⇒ Protection against harsh environment => New materials

Thermal Barrier Coatings (TBCs)

- TBCs used in combustion and exhaust chamber for insulation
- Combustion temp. increased by 200-300°C
- Lower thermal conductivity and long lifetime desired

Thermal Spraying

- Branch of surface engineering
- Heat generated by combustible gases/electric arc
- Coating built up particle by particle

A. TBCs with new microstructures

- Liquid feedstock Suspension plasma spraying
- Smaller particle sizes sub-micron to nanometric

- Progressive Surface 100HE
- Radial injection
- Injection parameters require tuning and are sensitive to suspension parameters

UNIVERSITY WEST Trollhättan

 Mettech Axial III
Axial Injection
Less sensitive to suspension properties and injection parameters

Higher enthalpy required to melt the particles in liquid than in powder spraying

Why Suspension Plasma Spraying?

UNIVERSITY WEST Trollhättan

Great potential for better TBCs – Unique microstructures

Powder vs liquid feedstock spraying

Smaller particles tend to follow plasma gas stream

Column formation – liquid feedstock

Influence of roughness on column density

Substrate specimen: Hastelloy X

UNIVERSITY WEST Trollhättar

Bond coat: AMDRY 386, sprayed by APS, F4 gun

Topcoat: 8YSZ suspension, 10wt.% solid load, sprayed with Mettech Axial III gun

Low Thermal Conductivity

Thermal conductivity measurements were done using the Laser Flash Method

UNIVERSITY WEST Trollhättan

16/25 N. Curry, Z. Tang, N. Markocsan, P. Nylen, Surf. Coat. Technol., 268, 2015, p. 15-23

High Lifetime

- Standard lifetime test developed by GKN Aerospace
- Burner rig testing (Thermal shock testing)

UNIVERSITY WEST Trollhättan

Low erosion resistance

UNIVERSITY WEST Trollhättan

B. New materials and architectures

- Higher operating temperature (>1200°C) poses several challenges
- State-of-the-art topcoat TBC material YSZ has limitations above 1200°C
 - Poor phase stability
 - Poor sintering resistance
 - Susceptibility to CMAS attack
- Need for new ceramic materials!

New TBC material – Gadolinium Zirconate

Why Gadolinium Zirconate?

- Lower thermal conductivity
- Excellent phase stability
- CMAS attack resistance

Why Double layer GZ/YSZ?

- GZ has a lower fracture toughness than standard 8YSZ
- GZ reacts with alumina (TGO), leading to formation of GdAIO₃
- Therefore, GZ/YSZ double layered TBCs are widely investigated

Source: Vassen et al., Surf. Coat technol, 205, 2010.

Multilayered TBCs

Erosion resistance of multilayered TBCs

Lifetime & failure analysis

TCF test with 1hr heating and 10 min cooling

TCF failed single layer YSZ a) SEM micrograph b) Photograph

TCF failed double layer GZ/YSZ a) SEM micrograph b) Photograph

TCF failed triple layer GZdense/GZ/YSZ a) SEM micrograph b) Photograph

UNIVERSITY WEST Trollhättan

23/25 S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén: Surface and Coatings Technology, Vol. 283, 15 December 2015, pp. 329-336

Conclusions

- Improvement in TBCs can improve engine efficiency significantly
 - New materials
 - New deposition processes
 - Multi-layered TBCs
- Liquid feedstock plasma spraying a promising method for next generation TBCs
- Cheap, easy to scale-up method
- SPS coatings with improved functional performance

Acknowledgements

- Funding
 - KK-foundation
 - Västra Götalandsregionen (VGR)
- PhD students
 - Ashish Ganvir
 - Satyapal Mahade
- Engineers
 - Stefan Björklund
 - Jonas Olsson
 - Kenneth Andersson

Thank you for your attention

SIEMENS

E-mail: mohit-kumar.gupta@hv.se

