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• A research and innovation 
centre founded by:
o Saab Automobile (now 

NEVS)
o Volvo Aero Corporation 

(now GKN Aerospace)
o University West

• Good collaboration with 
industry

• State-of-the-art facilities

Production Technology Centre (PTC) 
Trollhättan, Sweden
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• Motivation
• Thermal Barrier Coatings (TBCs)
• Liquid Feedstock Plasma Spraying – Suspension 

Plasma Spraying (SPS)
 Functional Performance of SPS TBCs
 New materials and coating architectures

• Conclusions

Outline
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TBCs in Gas Turbines

Courtesy: Siemens Turbomachinery Courtesy: GKN Aerospace

Power plants
Aeroplanes

SGT-800
RM-12
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The CO2 emissions are increasing!

Source: European Aviation Environmental Report 20165/25



• 1% increase in engine 
efficiency of a power plant 
of 300 MW would result in 
savings of:
 more than $ 2 M/year fuel 

costs
 approx. 25 000 t/year 

reductions in CO2

Gas Turbine Efficiency

6,5€/GJ fuel cost, 8000 h/a
Ref: M. Oechsner, Siemens, TBC Systems for Gas Turbine Applications 
– Status and Future Challenges, Turbine Forum, Nice, April 25, 2012
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• Increase the operating temperature
⇒ Lower thermal conductivity TBCs => Design of 

coating microstructure
⇒ Multilayered systems with new materials

• Better durability of TBCs
⇒Protection against harsh environment => New 

materials

Objective: Improve engine efficiency
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• TBCs used in 
combustion and exhaust 
chamber for insulation

• Combustion temp. 
increased by 200-300°C

• Lower thermal 
conductivity and long 
lifetime desired

Thermal Barrier Coatings (TBCs)

Chamber inner 
surface exposed 
to high temp.
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Thermal Spraying
• Branch of surface 

engineering
• Heat generated by 

combustible 
gases/electric arc

• Coating built up 
particle by particle

Energy

Material

Gases
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A. TBCs with new microstructures

• Progressive Surface 
100HE

• Radial injection
• Injection 

parameters require 
tuning and are 
sensitive to 
suspension 
parameters

• Mettech Axial III
• Axial injection
• Less sensitive to 

suspension 
properties and 
injection 
parameters

Higher enthalpy required to melt the particles
in liquid than in powder spraying

• Liquid feedstock – Suspension plasma spraying
• Smaller particle sizes – sub-micron to nanometric
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Why Suspension Plasma Spraying?

Conventional
powder spraying Electron Beam- Physical

Vapour Deposition

Low thermal 
conductivity !

High strain 
tolerance ! 

Suspension Plasma Spraying

Higher strain and low 
thermal conductivity !
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Great potential for better TBCs – Unique microstructures
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Powder vs liquid feedstock spraying
• Smaller particles tend to follow plasma gas stream

Source: VanEvery et al., JTST, 20(4), 2011,
Sokolowski et al., JTST, 25(1-2), 2016
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Column formation – liquid feedstock

Rough substrate
Smooth substrate

Columnar coatings – cheaper 
alternative to EB-PVD!!

Source: Sokolowski et al., JTST, 25(1-2), 201614/25



Polished Polished/ Grit Blasted

Grit Blasted Standard

Ra 1-2 µm Ra 3-4 µm

Ra 6-8 µm Ra 11-12 µm

Influence of roughness on column density

Substrate specimen: Hastelloy X

Bond coat: AMDRY 386, sprayed by 
APS, F4 gun

Topcoat: 8YSZ suspension, 10wt.% solid 
load, sprayed with Mettech Axial III gun

N. Curry, Z. Tang, N. Markocsan, P. Nylen, Surf. Coat. Technol., 268, 2015, p. 15-23
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Low Thermal Conductivity
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N. Curry, Z. Tang, N. Markocsan, P. Nylen, Surf. Coat. Technol., 268, 2015, p. 15-23

Thermal conductivity 
measurements were 
done using the Laser 
Flash Method
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N. Curry, K. VanEvery, T. Snyder N. Markocsan, Coatings 2014, 4, 630-650

High Lifetime

All coatings survived without 
failure!

The test was stopped!

• Standard lifetime test 
developed by GKN 
Aerospace

• Burner rig testing 
(Thermal shock testing)
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Low erosion resistance

N. Curry, K. VanEvery, T. Snyder N. Markocsan, Coatings 2014, 4, 630-650

Erosion test was conducted 
at room temperature 
according to GE standard 
E50TF121
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B. New materials and architectures
• Higher operating temperature (>1200°C) poses 

several challenges
• State-of-the-art topcoat TBC material YSZ has 

limitations above 1200°C 
 Poor phase stability
 Poor sintering resistance
 Susceptibility to CMAS attack

• Need for new ceramic materials!

Iceland Volcano

Saudi Arabian Sand
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Why Gadolinium Zirconate?
• Lower thermal conductivity
• Excellent phase stability
• CMAS attack resistance

Why Double layer GZ/YSZ?
• GZ has a lower fracture toughness than 

standard 8YSZ 
• GZ reacts with alumina (TGO), leading to 

formation of GdAlO3

• Therefore, GZ/YSZ double layered TBCs 
are widely investigated

Source: Vassen et al., Surf. Coat technol, 205, 2010.

New TBC material – Gadolinium Zirconate
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S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén, Surface and Coatings 
Technology, Vol. 283, 2015, pp. 329-336

Multilayered TBCs
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Erosion resistance of multilayered TBCs 

S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén, R. Vassen, Proceedings of the ITSC 2016, pp. 343-347/2522



Lifetime & failure analysis

TCF failed triple layer GZdense/GZ/YSZ a) SEM micrograph b) Photograph

TCF test with 1hr heating and 10 min cooling

TCF failed single layer YSZ a) SEM micrograph b) Photograph

TCF failed double layer GZ/YSZ a) SEM micrograph b) Photograph

S. Mahade, N. Curry, S. Björklund, N. Markocsan, P. Nylén: Surface and Coatings Technology, Vol. 283, 
15 December 2015, pp. 329-336
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Conclusions
• Improvement in TBCs can improve engine efficiency 

significantly
 New materials
 New deposition processes
 Multi-layered TBCs

• Liquid feedstock plasma spraying – a promising method for next 
generation TBCs

• Cheap, easy to scale-up method
• SPS coatings with improved functional performance
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Thank you for your attention
E-mail: mohit-kumar.gupta@hv.se
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