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Background

Over the past few decades the efficiency of the
compressors in turbofan engines has been continuously
Improved through usage of the modern three-dimensional
design techniques for compressor blades and vanes.

The potential further improvements could be achieved if
the interaction between different compressor components
IS being optimized from the engine system perspective




Motivation

For the aerospace applications the weight and size of the
engine has a major impact on fuel consumption ->future
compression systems have to be made compact, with
parts closely integrated to each other

The abillity to assess complex dynamic processes is being
challenged since the various parts cannot be considered
Isolated from each other.

Usage of the light materials and thin walls means that the
traditional conservative design methods are no longer
appropriate




Purpose

* VINK project has been initiated to address this
complex interaction in the design chain of a high
speed booster including a LPC, an intermediate duct
containing support struts and a bleed system.

 The project aims at:

* Application and interconnection of the state-of-the-art virtual
tools and methods (both commercial and in-house tools)

« Defining the design rules for confident aerodynamic design of
a highly efficient low pressure compressor

« Develop open designs that can be used for detailed research
and as reference for improvements




Project background

 VINK : NFFP6 Vinnova funded project
« Started Nov 2014, duration 2 years

e Partners involved: GKN Aerospace (project leader),
Chalmers University, LYH, SWEREA and KTH

« GKN AEROSPACE
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Project workflow

Cycle analysis Initial aero layout
CTH GKN

—

Initial throughflow design
CTH

l

Aero design Details/ Optimized design Large scale aero analysis
LTH, CTH CTH CTH, KTH

l ¢

Detailed CAD design Structural analysis }% Aeromech analysis
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Aero design process

Reduced order through-flow (p, and a distributions, ).
Inputs like: angles, loading, reaction, intra stage swirl,
diffusion factors, deHaller number, etc.

* Include hub-to-shroud variation

» Axi-symmetric, non “free-vortex”

* Design individual airfoil sections
* Profile family, DCA, CDA, Arbitrary, Bezier, ...

Evaluate blade surface Mach numbers and
diffusion factors. Determine optimum surface
contours by iterating with airfoil geometry
program.




Engine assumption

Pre-defined airframe & thrust requirements - suitable

engine performance data - basic conceptual design -
definition of the component and stage interfaces

Geared turbofan architecture; 120+ inch fan

Airframe set of requirements:

twin aisle, 2 engines aircraft

Number of passengers 250

Range capability: 6500 NM

cruise Mach number: 0.82,

Thrust Class: 70klb thrust (static condition)




Engine performance

* Engine performance to define
booster boundary conditions
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 Initial conceptual design based on
performance data:

1(Fan) 3(IPC) 10(HPC) 2(HPT) 4(LPT)
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Basic IPC performance

* The top-of-climb condition selected to define basic
performance of the high speed booster

# stages 3

UNIT Take-off  Top-of-climb  Cruise

W23 kg/s 91,25 42,68 37,31
123 K 329,83 2824 265,7
P23 kPa 133,45 47,9 45,92
P24 kPa 2925 119,7 109,36
T24 K 418,5 376,3 347.8
XNi 6114 6242 5789

» Output: corner points (radius, axial coordinate)




1D design- Stage loading chart

Rotor Loading Chart
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e Reduced-order throughflow design (Axial)
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Radial equilibrium equation — old school?

2
¢, %n —sin(p—y)c, ©n +cos(p—y) S - alr-C,) dy g %S _sin(g—)F, —cos(¢-7)F,
dl om I, r dl dl dl g AN g )
b v SRS g S — = = (f) (9)
(a) ) (c) (d) (e)

(a) convective acceleration in meridional direction

(b) streamline curvature (SCM) -7

(c) angular momentum meridional . computing
_ \— station

(d) work gradient \

_ axis of rotation
(e) entropy gradient (losses) X_C ——Z

(f) body force (meridional direction)

(g) body force that is normal to the streamline (blade force)

Terms (a), (b), (d), (e), (f) and (g) are considered to be equal to zero in the “simplified radial
equilibrium equation” SRE.

The SCM-equation is still the back-bone in all turbomachinery design!
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ol Throughflow based design (SC90c)

* Six design iterations to optimize compressor
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Throughflow design — time marching (AxCent)

. - 2D Solution in full geometry
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Full 3D design (AxCent)




Input: 3d aero surfaces (blade, gas Other geometry features are based on
channel geometry) and blade count in previous designs and technical experience
each stage







AROMA tool (KTH)
Analysis Chain

Mapping forces
CFD to FEM
mesh

[ Coupled Model }

J

Reduction, ROM

Structural i
Damping

Full 360 Model

[ AROMA solver ]

 Focus of the aeromech

analysis in this project is on
the rear stage of the

booster —
.Stresses
data

Haigh
Diagram

| Stability I

CFD aerodamping




Cyclic symmetric
analysis

@ 6242rpm




ay

Q?%%ﬂ
£KTHE

¢

t¥d R3 modal analysis

Blade only Blade+disk

Mode 1, NDO

Mode 1, ND8

SET  TIHE/FREQ  LOAD STEF  SUBSTEP CUHULATIVE
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2 1343 1 2 2
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Campbell diagram R3
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R3 ZZENF diagram
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. . . . : ANSYS
« Aerodamping simulations in Ansys CFX v17, e

using Fourier Transformation method

* Transient simulation initialized by a steady
state solution (rotor domain)
Waero = — f h - fip,dA Aerodynamic work

A
_ _wtwrﬂ
mwha*c?(pg — p1)

[r]

Aerodynamic damping
coefficient

§ = —W,ero /2KE.,  LOgarithmic decrement

The negative value of aerodynamic damping implies unstable condition - flutter
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Aerodamping curve R3

Modal Reduced
Frequency (Hz) Frequency
k = 2rifc/U
Mode 1 589.5 0.59
Mode 2 1472.7 1.46
Mode 3 1999.2 1.99

Log-Dec
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W Rear stage & IMC
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» 3D CFD design of the
rear stage with IMC
done by GKN
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: ANSY
Bleed opening added Ry

between S3 and ICC Academic

—> To asses impact of
the bleed channel on
the performance

Bleed inlet ——
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St Steady state stage aerodynamics

Stage modelled in CFX
(single passage, mixing plane at
interfaces, periodic boundaries)
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Unsteady aerodynamic simulations

 To assess the blade row interaction and unsteady
aerodynamic forces, transient simulations have to be
performed

Scaling method
(to achieve equal pitch)

domain R3 S3 IMC

Full 75 130 9

annulus

Sector 8 14 1

40deg

S3:130 2> 126

R3 . 75 9 72 0 0.150 0.300 {m)
. | 2 IEIEE 2 I

0.075 0.225

BCR:1.73 > 1.75




Structural analysis of IMC duct

AR « Varying strut panel wall &

- casing wall thickness t=1-3mm

o Different materials: Ti-6Al-4V,
Al 7075, carbon-fiber

| t:1..3mm b .
0,000 - 0,050 - 0,100 (rm) |‘ COmpOSIte




Near term work

Aerodynamic optimization of the stages
» Off -design operating point (approach with 30% bleed air)
« Aerodamping simulations with linearized solver (LUFT)

* Unsteady aerodynamic simulations of the rear stage
(including bleed box) - potential effects on R3, forcing on
S3 and strut, unsteady aero forces on the “bleed lip”

« Aeromech analysis of the IMC duct and struts




Summary

» Design process of a three stage high speed booster
Intended for a geared engine architecture has been
presented

* The platform and methods established in the project
enables further detailed research in respective areas and
can be used a reference for improvements

« Astrong collaboration between has been established the
partners (industry and academia) to conduct future
national and international research and demonstrator
projects.
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