

Multidisciplinary Optimization for Integrated Design of Aero-engine Components

Design for Performance

Visakha Raja | 11 October 2016

CHALMERS

Agenda

- > Project Context
- > GKN Structures (or components)
- > System and component level analyses
- > Structures optimisation

Conclusion

10110 Rev. 22

- > Project titled Design for Performance (DFP)
- > Cooperation among
 - GKN Aerospace Sweden AB
 - Chalmers Product and Production Development
 - Chalmers Applied Mechanics
- > Funding : Vinnova NFFP6

http://www.vinnova.se/sv/Resultat/Projekt/Effekta/Konstruktion-for-Prestanda---avancerad-motorarkitektur-och-integration/

- Industrial PhD, part of DFP
- Primary concern: GKN's engine structures

People Involved

Prof. Ola Isaksson Prof. Em. Hans Johannesson Visakha Raja Prof. Michael Kokkolaras	Chalmers University of Technology Department of Product and Production Development
Prof. Tomas Grönstedt Sebastian Samuelsson Olivier Petit Xin Zhao Anders Lundbladh	Chalmers University of Technology Department of Applied Mechanics
Anders Lundbladh Visakha Raja	GKN Aerospace Sweden AB
Prof. Michael Kokkolaras	Department of Mechanical Engineering McGill University, Montreal, Canada.

10110 Rev.22

The Turbofan Engine

inlet flow

CHALMERS

GKN's Engine Structures

> Hot structures

- Located after combustor, hot section; Mainly turbine structures
- Cold structures
 - Located before combustor, cold section; Compressor fan structures

Figures of structures are only representative and do not correspond to that in the engine shown.

Turbofan Developments

LEAP

https://www.cfmaeroengines.com/engines/leap/

Open Rotor

http://ec.europa.eu/rese arch/transport/news/ite ms/dream_ip_encouragi ng_results_en.htm

PW1000 G http://www.a320neo.com/airbus-a320-neo-photo-album/pratt-whitney-pw1000g-purepowerengine-cross-section.php

Need to be proactive about system developments

7 On Integrated Product Architectures: Representation, Modeling and Evaluation

- > Turbine Rear Structures (TRSs
- > Multidisciplinary design tasks

- > System interaction with component (engine -> TRS)
 - BCs *from* system *to* component
- > Analyses differ from component to system level
- > System component interaction measures will enable:
 - Better tuning of component designs to system operations

ISABE 2015-20082

> Trading becomes necessary among design parameters

Aerodynamically Good Design wrt Pressure Drop :

Can be poor from Weight or Lifing perspective

Aerodynamically Poor Design wrt Pressure Drop:

Can be good from Weight or Lifing perspective

110 Rev.2

> Pressure drop, just one performance impacting factor

ISABE 2015-20082

- > Couple pressure drop with system SFC calculation
- > Pressure drop ranges for aerodynamically well designed TRS
- Single pressure drop value for poorly functioning TRS

Components' Effects on System

- > 0. 9% difference in SFC
 - > Aerodynamically <u>well</u> designed vs Aerodynamically <u>poorly</u> designed
- > System (engine) level effects cannot be neglected
- > More valid results if more levels are included

ISABE 2015-20082

> Given LPT for a certain engine:

- > Perform preliminary assessments on the rear structure (TRS)
- Stiffest and lightest TRS
- In this presentation, only one way coupling is considered

Engine Design Details

Geared turbofan example: Pratt&Whitney PW1000G GTF Source: <u>http://www.a320neo.com/airbus-a320-</u> <u>neo-photo-album/pratt-whitney-pw1000g-</u> <u>purepower-engine-cross-section.php</u>

Altitude (ft)	Mach	ΔISA (°K)	Rating	Thrust (kN)
)	0.25	15	Take-off	252.1
35000	0.82	10	Top of Climb	67.3
35000	0.82	0	Cruise	51.2

Operating points and thrust requirements

Geared turbofan	Top of climb
OPR	55.7
BPR	12.4
Fan PR	1.29
IPC PR	2.48
HPC PR	17.37
Gear box ratio	3.115
Turbine inlet temperature (K)	1838
LPT rotational speed (RPM)	6237

Engine performance data

10110 Rev. 21

LPT Design Details

	Inlet Properties
Inlet mass flow	42.615 kg/s
Inlet T total	1290 K
Inlet P total	5.11 bar
Power requirement	23.28 MJ/s
Inlet cooling mass flow (%)	0
Inlet flow angle	0

LPT design inlet properties

3-stage LPT considered in this case

The TRS Stiffest Structure Problem

Problem specification:

Say, G = [a b c d e f g h], the geometrical variables

min.	Stiffness		
G			
st	G lower < G <		

Stiffnes = Load at point3/displacement at point 3

G_upper

G_upper: upper limit on the movements allowable for the points 4, 5, 6 and 7 G_lower : lower limit on the movements allowable for the points 4, 5, 6 and 7

Optimise Load Path Across Load Cases

Find the stiffest & lightest TRS geometry for a certain turbine by varying the geometrical position of TRS vanes

10110 Rev. 22

CHALMERS

Problem Co-ordination

LPT design Load case FE solver Optimisation LUAX-T

2

- ANSYS 14.0
- : MATLAB 2015

Preliminary Results

19 Multidisciplinary Optimization for Integrated Design of Aero-engine Components

CHALMERS

> Demonstrated intra-level co-ordination

- > Inter level co-ordination needs to be done
 - Requires further target response identification
- > Possible starting point for further detailed simulations

> Additional levels, additional disciplines

- > Look further into component architecture
- > Explore links to manufacture of the product

Thank you

