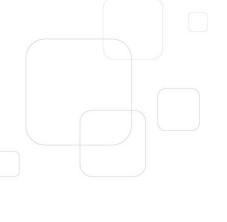


ANALYSIS OF SUPERPLASTIC FORMING PROCESS APPLIED TO AEROSPACE INDUSTRY: CASE STUDY OF AI 5083 ALLOY


Daniel A. Pereira¹, Mario H. Batalha¹, Andre F. Carunchio¹, Hugo B. Resende¹.

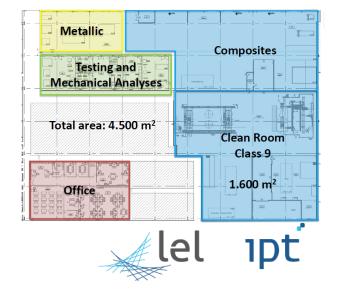
1: Lightweight Structures Laboratory, Institute for Technological Research, São José dos Campos, Brazil.

Summary

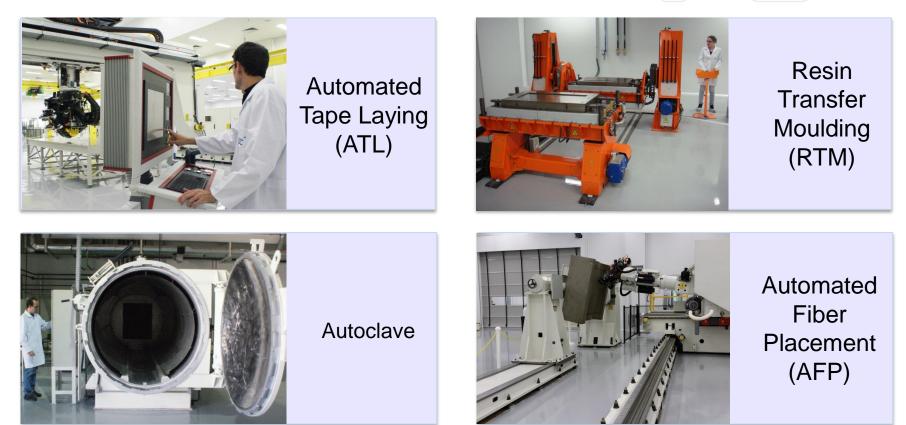
- Who we are
 - IPT
- Work objectives
- Introduction
- Materials and Methodology
- Results
- Conclusion

- IPT: Institute for Technological Research of State of São Paulo
 - The first R&D institutions in Brazil (1899)
 - More than 900 employers
 - Of total revenue
 - 42% metrology,
 - 31% R&D
 - 27% Technological Services

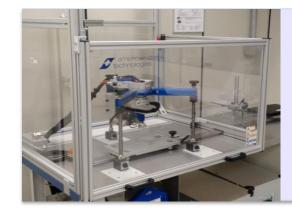
- 37 laboratories:
 - Metallurgy
 - Chemistry
 - Electrical
 - Naval
 - Fluid Dynamics
 - Geoenvironmental
 - Bionanomanufacturing



- Lightweight Structures
 Laboratory
 - Composite & Metallic
 - Inaugurated in 2014
 - Industrial capacity machines to give support to companies in theirs development and Research areas
 - Clean Room (Class 9, 1600 m²)



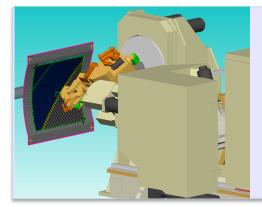
Composite: Laying and Infusion Process

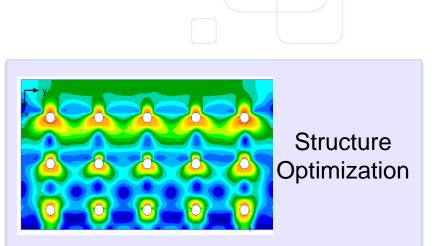


Destructive and non-destructive test

Automated Ultrasound Inspection

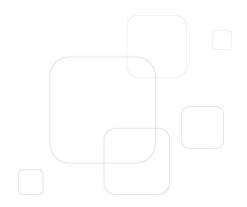
Residual Stress X-ray


Mechanical tests

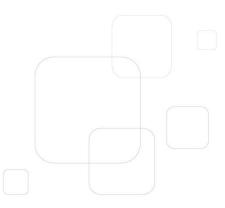


Computational Analysis:

Manufacturing Optimization

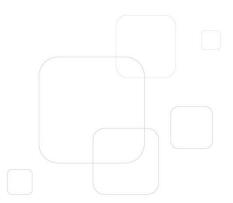


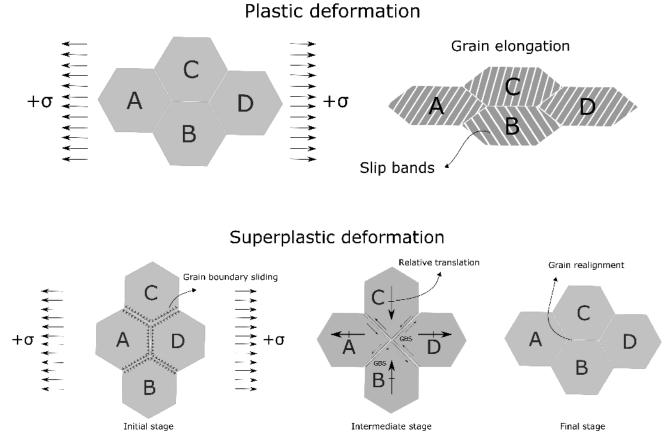
Metallic Welding Process


- Max. Speed: 3000 rpm
- Area: 2 x 1,5 x 0,8 [m]
- 30 kW
- 5 Axis
- Z axis max. force = 80 kN
- Argon chamber;

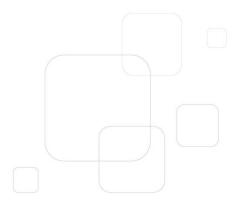
Automatic Hot Press (SPF/HF/DB)

- Max. Temperature: 1000 °C (100 °C/h)
- Max gas pressure: 40 bar
- Max. clamp: 150 Ton
- 762 x 863 x 600 (mm)
- 2 gas channels
- Purge and vacuum system




Work objectives

- Analyses the Superplastic forming process;
- Show the capability of the process;
- Specimen manufacturing in Aluminum alloys ;
- Tests and analysis;



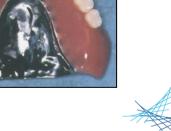
Rolls-Royce engine part SPF Ti64.

- Advantages
 - Forming complex geometries
 - Great surface finish
 - No "Springback"
 - Slight or no residual stress
 - Savings in costs and weight

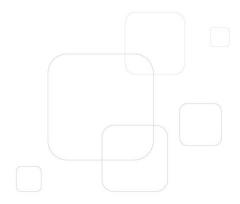
- Relevant questions
 - High temperature
 - Low productivity compared with conventional process (ex. hot forming)
 - Limited number of SPF alloys

Commercially available superplastic alloys

	Alloy	Composition, wt%	SPF temperature	Strain rate	Elongation
Titanium	Ti-6/4	Ti-6Al-4V	880-920°C	$5 \times 10^{-4} s^{-1}$	~1000%
	SP700	Ti-4Al-3V-2Fe-2Mo	750-800°C	$3\times 10^{-4}s^{-1}$	≥ 300%
	Ti-6242	Ti-6Al-2Sn-4Zr-2Mo	850-940°C	$5 \times 10^{-4} s^{-1}$	> 500%
	IMI550	Ti-4Al-4Mo-2Sn-0.5Si	880-900°C	$5 \times 10^{-4} s^{-1}$	> 500%
	IMI834	Ti-5.8Al-4Sn-3.5Zr-	950-990°C	$\sim 10^{-4} s^{-1}$	~300%
		0.7Nb-0.5Mo-0.3Si-0.05C			
Aluminum	2004	Al-6Cu-0.4Zr	460°C	$\sim 10^{-3} s^{-1}$	800 - 1200%
	5083	Al-4.5Mg-0.7Mn-0.1Zr	500-520°C	$10^{-3}s^{-1}$	~300%
	7475	Al-5.7Zn-2.3Mg-1.5Cu-0.2Cr	515°C	$2\times 10^{-4} s^{-1}$	800%
	8090	Al-2.4Li-1.2Cu-0.7Mg-0.1Zr	530°C	$5\times10^{-4}s^{-1}$	1000%
	2090	Al-2.5Cu-2.3Li-0.12Zr	530°C	$\sim 10^{-3} s^{-1}$	~500%



Introduction ■ Aerospace ■ Electronics ■ Civil Engineering ■ Automotive ■ Medicine ■ Railroad Applications 34% (a) Aston Martin Vanquish 42% (b) Morgan Aero 8 (a) Eclipse 500 Jet 1% 10% 10% 3% (b) Boeing 777 (c)Boeing737 Adapted from Vulcan, 2006

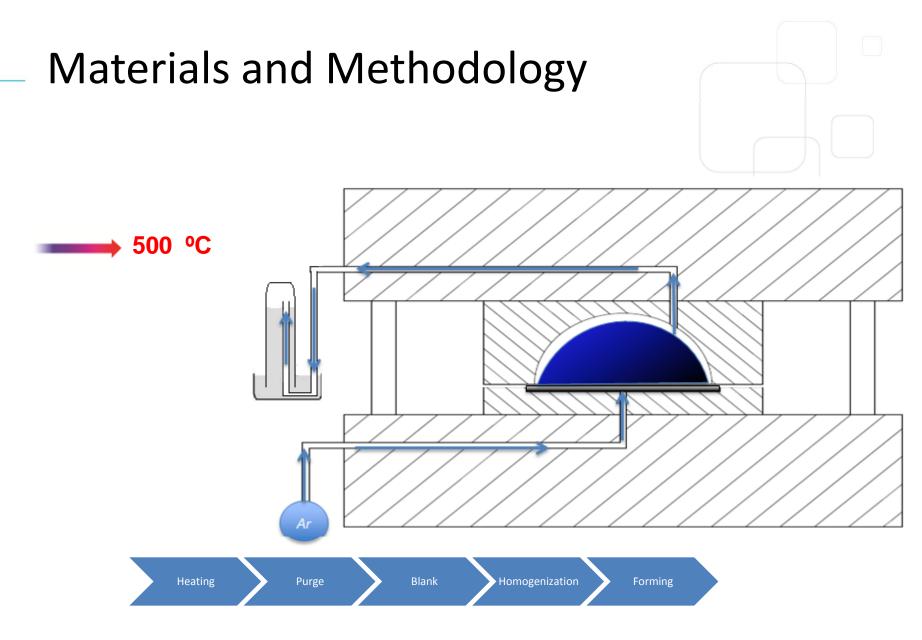


1Dt

Al 5083 applications

Superplastically components formed in SP5083, 1. wing tip light housings 2. strakelets, 3. engine intake lipskins and 4. winglet (SUPERFORM ®)

Boeing 777 Wing Tip Light Housing

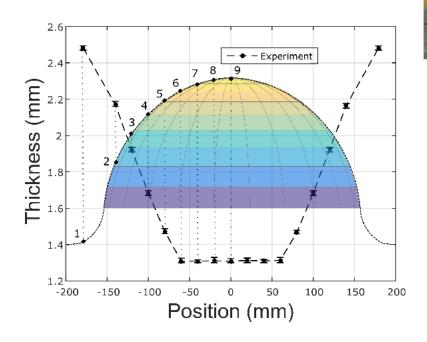


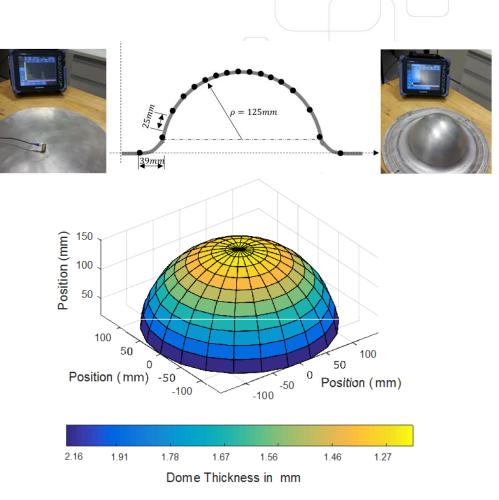
Boeing 737 Outboard Leading Edge Strakelet

Materials and Methodology

Forming

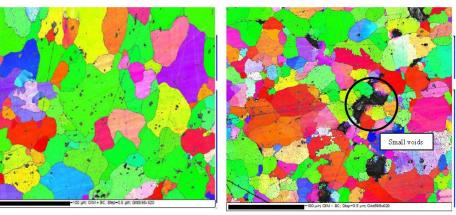
- Gas: Argon
- Total time: ≈ 51min
- Release agent: boron nitride
- Temp.: 500 °C
- Conventional AI 5083

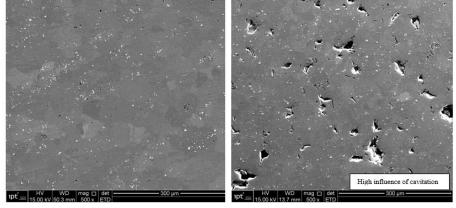




Results

Ultrasound Analysis




Results

Cavitation

Electron backscatter diffraction (EBSD) Before and after forming

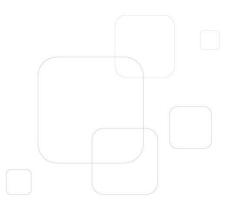
scanning electron microscope (SEM) Before and after forming

Conclusions

- Dome did not reach the desired geometry;
- Cavitation problem;
- Ultrasound showed uniform thickness around the dome;


Conclusions

- Next steps:
 - Geometrical inspection;
 - Measure residual stress by X-ray diffraction;
 - Finite element analysis can improved the process;
 - Material characterization



Conclusions

Next works:

- Establish own experimental strain rate sensibility curves;
- Forming new materials;
- Using counter pressure during forming;
- Studies in metallic honeycomb manufacturing by DB;
- Search for new materials for the tooling;
- FSW + SPF

Obrigado!

lel@ipt.br

