Laser welding process – a review of keyhole welding modelling

FTF conference 2016 Abstract ID 25078

Josefine Svenungsson^{a*}, Isabelle Choquet^a, and Alexander F. H. Kaplan^b

^aUniversity West, Department of Engineering Science, 461 32 Trollhättan, Sweden ^bLuleå University of Technology, Department of Engineering Science and Mathematics, 971 87 Luleå, Sweden

Introduction

High power laser beam $5 \times 10^4 - 10^7$ W/cm²

Ex. specific properties

• 10 µm or 1 µm wavelength

General properties

- Melting and vaporization
- High vapor pressure (recoil pressure)
- Large depth to width ratio

Kaplan, A., (2012.). Appl. Physics Letters 101, 151606.

Advantages

- Large welding speed
- Low energy input
- Small HAZ
- Narrow bead

Disadvantages

- Humping
- Lack of fusion (gap)
- Spatter
- Porosity

Pores in weld generated by YAG-laser in Ti-alloy

Comparison of the size of weld beads (a) laser-beam (b) TIG American Welding Society Welding Handbook Ed. 8

Motivation

- Understand how to reduce some defects: pores and too narrow waist
- Supplement experimental observations
- Gain process understanding

Nd:YAG, IN-alloy $L_{t_{i}}L_{b} > L_{w}$

Eriksson et al. (2014), J. laser. Appl. 26, 012006.

Otto et al. (2011), Phys. Proc., 12, 11-20.

Physics of keyhole laser welding

Beam-matter interaction

- Direct Fresnel
- Multi-Fresnel
- Inverse Bremsstrahlung
- Mie- and Rayleigh-scattering

Thermal fluid

- multi-scale:
 - kinetic (Knudsen layer)/hydrodynamic
- multi-phase
 - melting/solidification, vaporization
- surface deformation

Courtois, M. et al. (2013). J. Physics D: Appl. Physics Non-linear and multi-physical problem **46**(50), 505305.

Thermal fluid

Knudsen layer – a vapor layer with a thickness of some mean free paths

Jump relations on temperature, pressure and density according to Knight (1979) is a simple way of implementing the **Knudsen layer**.

Tan, W. et al. (2013). J. of Physics D: Appl. Physics 46(5), 055501.

Keyhole laser welding - modelling

Can distinguish 2 approaches:

1. Laser beam:

Beam/material interaction: 1 way Metal: heat conduction (+ convection via boundary conditions)

2. Laser beam:

Beam material interaction: 1 or 2 way Metal: fluid flow in molten pool (based on CFD techniques)

Modelling the beam

Electromagnetic theory of optics

Assumptions:

- Linear optics is valid (small emg. fields)
- Homogeneous, isotropic and non-dispersive media,
- Locally neutral media at the scale considered (L > Debye)
 - Physical wave optics (Helmholtz eq.)

With additional assumptions:

- non-conduction media
- Simple harmonic plane waves for laser light

Geometrical wave optics (Wave eq. & Fresnel laws of optics,

ray-tracing method)

Ray-tracing

Cho, J.H., Na, S.J., 2006 J. Phys. D: Appl. Phys. **39**(24), 5372-5378.

Absorption/reflection:

function of wavelength, polarization, angle of incidence, surface temperature

Application:

- One way coupling pre-defined keyhole heat input
- Two ways coupling (ex. Na et al)
 With keyhole geometry CFD calculation and ray-tracing method
 iteratively applied

Models with beam-matter interaction and thermal fluid flow

Author	Domain of study	Main properties of model							Some other properties	
		D	B-M	S	V	Н	М	В	K	
Ki et al. (2001), (2002)	cw CO ₂ laser, steel	2	cF	L	$p_r,\ h_{fg}$	×	×		×	1 st model Narrow band LS
Lee et al. (2002)	mild steel	2	cF	V	h_{fg}		×	×	×	Assume sonic flow in Knudsen layer
Chen and Wang Wang and Chen (2003)	cw CO ₂ laser, iron	3*	FB*							*Cylindrical keyhole cavity Only gas flow; no thermal aspect
Cho et al. (2006)	pulsed Nd:YAG S304 steel	3	cF	V	p_r, h_{fg}					Constant surface tension Radiative cooling cavity-room
Zhou et al. (2006)	pulsed Nd:YAG	2	cFB	V	$p_r,\ h_{fg}$		×	×	×	Vapour included (absorbing- emitting media; no flow)
	÷									÷
Cho et al. (2012)	fibre laser, carbon steel	3	cF*	V	$p_r, \ h_{fg}$	×	×	×		Vapour flow included *with diffraction
Otto et al. (2012)		3	cF	V	$p_r, \ h_{fg}$	×				Sharper Surface Force VOF, vapour flow included
Tan et al. (2013)	Pulsed, 304 Stainless steel	3	cFB*	L	$p_r, \ h_{fg}$		×	×	×	Vapour flow included *with Beer's law
Courtois et al. (2013)	Nd:YAG, DP600 steel	2	cF*	L	$S_{ ho},\ h_{fg}$			×	×	*Eikonal equation Vapour flow included

D – number of space dimensions, **B**-**M** – beam-matter interaction with beam and flow coupled (c), multiple Fresnel absorption (F), iB-absorption (B), **S** – surface deformation using Level Set (L) or VOF (V), **V** – vaporization modeled through: mass source (S_{ρ}) , recoil pressure (p_r) , latent heat of vaporization (h_{fg}) , **H** –heat source in relative motion with the base metal (if ×), **M** –Marangoni force modelled (if ×), **B** –buoyancy modelled (if ×), **K** –Knudsen layer modelled (if ×).

Common Assumptions

Beam-matter interaction

- Fresnel
- Multiple Fresnel in most models

Modelling of thermal fluid

- Newtonian and laminar fluids
- Constant thermodynamic and transport properties in most models
- At least two phases (liquid and solid)
- Solidification and melting (mushy zone model)
- Vaporization (seldom as mass source term)
- Surface deformation in most models

Differences

Beam-matter interaction

- Inverse Bremsstrahlung not always considered
- Physical/optical wave optics
- Ray tracing: One way or two way coupling

Modelling of thermal fluid

- Few models consider vapour phase
- Recoil pressure (through mass source or force)
- Knudsen layer
- Marangoni
- Buoyancy
- T-dependent thermodynamic properties, ...

Conclusion

- Several models have been developed in the past 15 years, First by Ki et al. (2001).
- Field still under development.
- Comparison of existing models and assumptions would be of interest

Physical models may need further improvements:

- Temperature dependent material properties are often neglected. Sometimes not available over complete range.
- Metal plasma modelled as a gas and not yet a plasma.

- ...

Important issue is the need for experimental data for validation of models.

Ongoing modelling work

Includes in 1st step:

- T-dependent material properties
- Fresnel, multi-Fresnel, iB,
- Solid, liquid, vapor
- Solidification, melting, vaporization
- Surface deformation
- Marangoni, buoyancy
- Ray tracing with one way coupling

Probably not yet sufficient for modeling surface instability and pore formation

fullWeld200um.avi

Test case model

Numerical test case model

- 3D model of 6 mm plate
- Argon shielding gas flow
- Welding speed 15 mm/s and 9 mm/s

Volumetric heat source

Thermophysical properties assumed constant in each phase – mixture properties are used

Calculation domain

Experimental measurements

Thank you for your attention!

