Laser welding process – a review of keyhole welding modelling

FTF conference 2016
Abstract ID 25078

Josefine Svenungssona*,
Isabelle Choqueta, and Alexander F. H. Kaplanb

aUniversity West, Department of Engineering Science, 461 32 Trollhättan, Sweden
bLuleå University of Technology, Department of Engineering Science and Mathematics, 971 87 Luleå, Sweden
Introduction

High power laser beam $5 \times 10^4 - 10^7$ W/cm²

Ex. specific properties

- 10 µm or 1 µm wavelength

General properties

- Melting and vaporization
- High vapor pressure (recoil pressure)
- Large depth to width ratio

Advantages

- Large welding speed
- Low energy input
- Small HAZ
- Narrow bead

Disadvantages

- Humping
- Lack of fusion (gap)
- Spatter
- Porosity

Comparison of the size of weld beads
(a) laser-beam (b) TIG

Pores in weld generated by YAG-laser in Ti-alloy

American Welding Society Welding Handbook Ed. 8
Motivation

- Understand how to reduce some defects: pores and too narrow waist
- Supplement experimental observations
- Gain process understanding

Nd:YAG, IN-alloy
\[L_t, L_b > L_w \]

Physics of keyhole laser welding

• **Beam-matter interaction**
 - Direct Fresnel
 - Multi-Fresnel
 - Inverse Bremsstrahlung
 - Mie- and Rayleigh-scattering

• **Thermal fluid**
 - multi-scale:
 - kinetic (Knudsen layer)/hydrodynamic
 - multi-phase
 - melting/solidification, vaporization
 - surface deformation

Non-linear and multi-physical problem

Thermal fluid

Knudsen layer – a vapor layer with a thickness of some mean free paths

Jump relations on temperature, pressure and density according to Knight (1979) is a simple way of implementing the **Knudsen layer**.

Keyhole laser welding - modelling

Can distinguish 2 approaches:

1. Laser beam:
 Beam/material interaction: 1 way
 Metal: heat conduction (+ convection via boundary conditions)

2. Laser beam:
 Beam material interaction: 1 or 2 way
 Metal: fluid flow in molten pool (based on CFD techniques)
Modelling the beam

Electromagnetic theory of optics

Assumptions:
- Linear optics is valid (small emg. fields)
- Homogeneous, isotropic and non-dispersive media,
- Locally neutral media at the scale considered \((L > \text{Debye})\)
 - Physical wave optics (Helmholtz eq.)

With additional assumptions:
- Non-conduction media
- Simple harmonic plane waves for laser light
 - Geometrical wave optics (Wave eq. & Fresnel laws of optics, ray-tracing method)
Ray-tracing

Absorption/reflection:
function of wavelength, polarization, angle of incidence, surface temperature

Application:
- One way coupling
 pre-defined keyhole heat input
- Two ways coupling (ex. Na et al)
 With keyhole geometry CFD calculation and ray-tracing method iteratively applied

Models with beam-matter interaction and thermal fluid flow

<table>
<thead>
<tr>
<th>Author</th>
<th>Domain of study</th>
<th>Main properties of model</th>
<th>Some other properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki et al. (2001), (2002)</td>
<td>cw CO₂ laser, steel</td>
<td>2 cF L p_r, h_{fg}</td>
<td>1st model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Narrow band LS</td>
</tr>
<tr>
<td>Lee et al. (2002)</td>
<td>mild steel</td>
<td>2 cF V h_{fg}</td>
<td>Assume sonic flow in Knudsen layer</td>
</tr>
<tr>
<td>Chen and Wang</td>
<td>cw CO₂ laser, iron</td>
<td>3* FB* p_r, h_{fg}</td>
<td>*Cylindrical keyhole cavity</td>
</tr>
<tr>
<td>Wang and Chen (2003)</td>
<td></td>
<td></td>
<td>Only gas flow; no thermal aspect</td>
</tr>
<tr>
<td>Cho et al. (2006)</td>
<td>pulsed Nd:YAG S304 steel</td>
<td>3 cF V p_r, h_{fg}</td>
<td>Constant surface tension</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Radiative cooling cavity-room</td>
</tr>
<tr>
<td>Zhou et al. (2006)</td>
<td>pulsed Nd:YAG</td>
<td>2 cFB V p_r, h_{fg}</td>
<td>Vapour included (absorbing-emitting media; no flow)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*with diffraction</td>
</tr>
<tr>
<td>Cho et al. (2012)</td>
<td>fibre laser, carbon steel</td>
<td>3 cF* V p_r, h_{fg}</td>
<td>Vapour flow included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*with Beer’s law</td>
</tr>
<tr>
<td>Otto et al. (2012)</td>
<td>Pulsed, 304 Stainless steel</td>
<td>3 cF V p_r, h_{fg}</td>
<td>Sharper Surface Force VOF, vapour flow included</td>
</tr>
<tr>
<td>Tan et al. (2013)</td>
<td>Nd:YAG, DP600 steel</td>
<td>3 cFB* L S_p, h_{fg}</td>
<td>Vapour flow included</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*Eikonal equation</td>
</tr>
</tbody>
</table>

D – number of space dimensions, B-M – beam-matter interaction with beam and flow coupled (c), multiple Fresnel absorption (F), iB-absorption (B), S – surface deformation using Level Set (L) or VOF (V), V – vaporization modeled through: mass source (S_p), recoil pressure (p_r), latent heat of vaporization (h_{fg}), H – heat source in relative motion with the base metal (if ×), M – Marangoni force modeled (if ×), B – buoyancy modeled (if ×), K – Knudsen layer modeled (if ×).
Common Assumptions

Beam-matter interaction

- Fresnel
- Multiple Fresnel in most models

Modelling of thermal fluid

- Newtonian and laminar fluids
- Constant thermodynamic and transport properties in most models
- At least two phases (liquid and solid)
- Solidification and melting (mushy zone model)
- Vaporization (seldom as mass source term)
- Surface deformation in most models
Differences

Beam-matter interaction
- Inverse Bremsstrahlung not always considered
- Physical/optical wave optics
- Ray tracing: One way or two way coupling

Modelling of thermal fluid
- Few models consider vapour phase
- Recoil pressure (through mass source or force)
- Knudsen layer
- Marangoni
- Buoyancy
- T-dependent thermodynamic properties, ...
Conclusion

- Several models have been developed in the past 15 years, First by Ki et al. (2001).
- Field still under development.
- Comparison of existing models and assumptions would be of interest

Physical models may need further improvements:
- Temperature dependent material properties are often neglected. Sometimes not available over complete range.
- Metal plasma modelled as a gas and not yet a plasma.
- ...

Important issue is the need for experimental data for validation of models.
Ongoing modelling work

Includes in 1st step:

• T-dependent material properties
• Fresnel, multi-Fresnel, iB,
• Solid, liquid, vapor
• Solidification, melting, vaporization
• Surface deformation
• Marangoni, buoyancy
• Ray tracing with one way coupling

Probably not yet sufficient for modeling surface instability and pore formation

fullWeld200um.avi
Test case model

Numerical test case model
 • 3D model of 6 mm plate
 • Argon shielding gas flow
 • Welding speed 15 mm/s and 9 mm/s
Volumetric heat source
Thermophysical properties assumed constant in each phase – mixture properties are used
Experimental measurements
Thank you for your attention!