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Introduction

High power laser beam 5 104 - 107 W/cm2

Ex. specific properties

• 10 µm or 1 µm wavelength

General properties

• Melting and vaporization

• High vapor pressure (recoil pressure)

• Large depth to width ratio Kaplan, A., (2012.). Appl. Physics Letters 101, 151606.



Advantages

• Large welding speed

• Low energy input

• Small HAZ

• Narrow bead

Disadvantages

• Humping

• Lack of fusion (gap)

• Spatter

• Porosity

Pores in weld generated by YAG-laser in Ti-alloyComparison of the size of weld beads
(a) laser-beam (b) TIG
American Welding Society Welding Handbook Ed. 8



Motivation

• Understand how to reduce some defects:

pores and too narrow waist

• Supplement experimental observations

• Gain process understanding

Lb

Lw

Lt

Nd:YAG, IN-alloy
Lt , Lb > Lw

2000 μm

Otto et al. (2011), Phys. Proc.., 12, 11-20.Eriksson et al. (2014), J. laser. Appl. 26, 012006.



Physics of keyhole laser welding

• Beam-matter interaction

- Direct Fresnel

- Multi-Fresnel

- Inverse Bremsstrahlung

- Mie- and Rayleigh-scattering

• Thermal fluid

- multi-scale:

kinetic (Knudsen layer)/hydrodynamic

- multi-phase

melting/solidification, vaporization

- surface deformation

Non-linear and multi-physical problem
Courtois, M. et al. (2013). J. Physics D: Appl. Physics

46(50), 505305.



Jump relations on temperature, pressure and density according to
Knight (1979) is a simple way of implementing the Knudsen layer.

Thermal fluid

Knudsen layer – a vapor layer with a thickness of some mean free
paths

Tan, W. et al. (2013). J. of Physics D: Appl. Physics 46(5), 055501.



Keyhole laser welding - modelling

Can distinguish 2 approaches:

1. Laser beam:

Beam/material interaction: 1 way

Metal: heat conduction (+ convection via boundary conditions)

2. Laser beam:

Beam material interaction: 1 or 2 way

Metal: fluid flow in molten pool (based on CFD techniques)



Modelling the beam

Electromagnetic theory of optics

Assumptions:

- Linear optics is valid ( small emg. fields)

- Homogeneous, isotropic and non-dispersive media,

- Locally neutral media at the scale considered (L > Debye)

Physical wave optics (Helmholtz eq.)

With additional assumptions:

- non-conduction media

- Simple harmonic plane waves for laser light

Geometrical wave optics (Wave eq. & Fresnel laws of optics,

ray-tracing method)



Absorption/reflection:

function of wavelength, polarization, angle
of incidence, surface temperature

Application:

 One way coupling

pre-defined keyhole heat input

 Two ways coupling (ex. Na et al)

With keyhole geometry CFD calculation

and ray-tracing method

iteratively applied

Ray-tracing

Cho, J.H., Na, S.J., 2006 J. Phys. D: Appl.
Phys. 39(24), 5372-5378.



Models with beam-matter interaction and thermal fluid flow

Author Domain of study Main properties of model Some other properties

D B-M S V H M B K

Ki et al.
(2001), (2002)

cw CO2 laser,
steel

2 �� L �� ,
ℎ��

× × × 1st model
Narrow band LS

Lee et al.
(2002)

mild steel 2 �� V ℎ�� × × × Assume sonic flow in Knudsen
layer

Chen and Wang
Wang and Chen
(2003)

cw CO2 laser,
iron

3* FB* *Cylindrical keyhole cavity
Only gas flow; no thermal aspect

Cho et al.
(2006)

pulsed Nd:YAG
S304 steel

3 �� V �� ,
ℎ��

Constant surface tension
Radiative cooling cavity-room

Zhou et al.
(2006)

pulsed Nd:YAG 2 ��� V �� ,
ℎ��

× × × Vapour included (absorbing-
emitting media; no flow)

Cho et al.
(2012)

fibre laser,
carbon steel

3 cF* V �� ,
ℎ��

× × × Vapour flow included

*with diffraction

Otto et al.
(2012)

3 �� V �� ,
ℎ��

× Sharper Surface Force VOF,
vapour flow included

Tan et al.
(2013)

Pulsed,
304 Stainless steel

3 cFB* L �� ,
ℎ��

× × × Vapour flow included

*with Beer’s law

Courtois et al.
(2013)

Nd:YAG,
DP600 steel

2 cF* L �� ,

ℎ��

× × *Eikonal equation
Vapour flow included

D – number of space dimensions, B-M – beam-matter interaction with beam and flow coupled (c), multiple Fresnel absorption (F),
iB-absorption (B), S – surface deformation using Level Set (L) or VOF (V), V – vaporization modeled through: mass source (�� ),

recoil pressure ( �� ), latent heat of vaporization ( ℎ�� ), H –heat source in relative motion with the base metal (if ×), M –Marangoni
force modelled (if ×), B –buoyancy modelled (if ×), K –Knudsen layer modelled (if ×).



 Newtonian and laminar fluids

 Constant thermodynamic and transport properties in most models

 At least two phases (liquid and solid)

 Solidification and melting (mushy zone model)

 Vaporization (seldom as mass source term)

 Surface deformation in most models

Modelling of thermal fluid

Common Assumptions

Beam-matter interaction

 Fresnel

 Multiple Fresnel in most models



 Few models consider vapour phase

 Recoil pressure (through mass source or force)

 Knudsen layer

 Marangoni

 Buoyancy

 T-dependent thermodynamic properties, …

Modelling of thermal fluid

Differences

Beam-matter interaction

 Inverse Bremsstrahlung not always considered

 Physical/optical wave optics

 Ray tracing: One way or two way coupling



Important issue is the need for experimental data for validation of
models.

Conclusion

- Several models have been developed in the past 15 years,
First by Ki et al. (2001).

- Field still under development.

- Comparison of existing models and assumptions would be of
interest

Physical models may need further improvements:

- Temperature dependent material properties are often
neglected. Sometimes not available over complete range.

- Metal plasma modelled as a gas and not yet a plasma.

- …



Ongoing modelling work
Includes in 1st step:

• T-dependent material properties

• Fresnel, multi-Fresnel, iB,

• Solid, liquid, vapor

• Solidification, melting, vaporization

• Surface deformation

• Marangoni, buoyancy

• Ray tracing with one way coupling

Probably not yet sufficient for modeling surface instability and
pore formation

fullWeld200um.avi



Calculation domain

Test case model

Numerical test case model

• 3D model of 6 mm plate

• Argon shielding gas flow

• Welding speed 15 mm/s and 9
mm/s

Volumetric heat source

Thermophysical properties
assumed constant in each phase –
mixture properties are used



Experimental measurements



Thank you for your attention!


