Prediction of damage and fracture during forming simulations in Alloy 718

Lluís Pérez Caro, Mikael Schill, Stefan Marth, Eva-Lis Odenberger, Mats Oldenburg

October 11-12, 2016 - Solna - Stockholm

Lluís Pérez Caro Researcher / Industrial PhD student, <u>luis.perez.caro@swerea.se</u>

swerea

swerea

PART OF RI.SE

Contents

- 1. Motivation
- 2. Aim and scope
- 3. Material
- 4. GISSMO damage model
 - 1. Implementation in LS-DYNA
 - 2. Calibration
- 5. Forming simulation coupled with damage
- 6. Summary and conclusions
- 7. Acknowledgements

NFFP6 SME project

Project: Virtual process chain for superalloy sheet metal aero engine structures – Validation and demonstrator

PART OF RI.SE

1. Motivation

PART OF RI.SE

swerea

1. Motivation

GKN Turbine Exhaust Case

swerea

PART OF RI.SE

2. Aim and scope

- Use the GISSMO damage model in order to accurately predict risk of cracks in the drawbeads after forming an Alloy 718 sheet
 - $\circ~$ Calibrate the GISSMO damage model
 - Compare forming simulations with experimental forming tests at room temperature

swerea

3. Material

- Alloy 718
 - Precipitation hardened nickel-chromium superalloy
 - Solution annealed condition
 - Nominal thickness of 2.54 mm

Hardening curves and r-values for Alloy 718 at room temperature

PART OF RI.SE

swerea

3. Material

- Alloy 718
 - Precipitation hardened nickel-chromium superalloy
 - Solution annealed condition
 - Nominal thickness of 2.54 mm

swerea

PART OF RI.SE

4. GISSMO damage model

- Generalized Incremental Stress State dependent damage Model
- Prediction of ductile damage
- Failure occurs when D = 1
- Implemented into LS-DYNA and coupled with *MAT_133 (Barlat YId2000)

swerealive

swerea

• Parameter determination directly from experimental tests

4. GISSMO damage model - Implementation

- Cards 3 and 4 of the LS-DYNA keyword *MAT_ADD_EROSION
- IDAM = 1
- DMGTYP = 1
- Main inputs
 - LCSDG: failure strain vs. triaxiality
 - $\circ~$ ECRIT: instability strain vs. triaxiality
 - o LCREGD: element size regularisation

Neukamm, Feucht, DuBois & Haufe (2008-2010)

swerea

PART OF RI.SE

4. GISSMO damage model - Implementation

- Cards 3 and 4 of the LS-DYNA keyword *MAT_ADD_EROSION
- IDAM = 1
- DMGTYP = 1
- Main inputs
 - LCSDG: failure strain vs. triaxiality
 - o ECRIT: instability strain vs. triaxiality
 - LCREGD: element size regularisation

Neukamm, Feucht, DuBois & Haufe (2008-2010)

swerea

PART OF RI.SE

4. GISSMO damage model - Implementation

- Cards 3 and 4 of the LS-DYNA keyword *MAT_ADD_EROSION
- IDAM = 1
- DMGTYP = 1
- Main inputs
 - LCSDG: failure strain vs. triaxiality
 - o ECRIT: instability strain vs. triaxiality
 - o LCREGD: element size regularisation

Haufe, DuBois, Neukamm, Feucht. LS-Dyna Developer Forum 2011, DYNAmore, Stuttgart

PART OF RI.SE

swerea

4. GISSMO damage model - Calibration

- 6 different geometries tested ۲
- ARAMIS[™] optical strain measuring system ۲

Plane Strain Shear 15°

Hydraulic press 1,300 t

MTS 100 kN

swerea

ARAMIS[™] strain field before fracture of GISSMO specimens

Biaxial

A50

A10

A80

4. GISSMO damage model - Calibration

- 6 different geometries tested
- ARAMIS[™] optical strain measuring system

swerea

5. Forming simulation coupled with damage

 The damage in the material is accumulated. Element failure occurs for D = 1. Then, the element is deleted

swerea

6. Summary and conclusions

- An initial calibration of the GISSMO damage model for an Alloy 718 sheet at room temperature is performed
- Experimental stress triaxiality values have a good agreement with simulations for six different specimen geometries
- A forming simulation including the GISSMO damage model can predict failure in the same areas where cracks were observed from forming tests at room temperature

swerea

7. Acknowledgements

 The support from GKN Aerospace Sweden AB, VINNOVA – Swedish Governmental Agency for Innovation Systems NFFP6 program for SME, Swedish Armed Forces and Swedish Defence Materiel Administration is greatly appreciated. Grant No. 2013-01173

Vi arbetar på vetenskaplig grund för att skapa industrinytta. www.swerea.se

PART OF RI.SE

swerea