

Uncertainty and Robustness in Aerospace Structures

ANDERS FORSLUND

Department of Product and Production Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016

In the aerospace industry...

"...a move towards **probabilistic design practices** has been recognized as a **potential game-changer**, as it is understood to reduce **costs**, **risks** and **lead times**, while increasing the **confidence** in analysis tools, and the **quality** and **reliability** of products"

Nasa report by Zang et al. (2002)

A different simulation approach...

Deterministic design

Probabilistic design

Nominal operation

Adds variation modeling

Worst-case scenarios

Uses probability distributions, etc.

Safety factors

Allows some probability of failure

Easy to implement in simulation

Difficult to implement in simulation

Probabilistic design → Robust design → Geometry assurance

Probabilistic design → Robust design → Geometry assurance

"Robust design is an engineering methodology that aims at minimizing the effects of variation without eliminating the variation itself."

Phadke (1995)

Probabilistic design → Robust design → Geometry assurance

"Geometry assurance is a set of activities aimed at reducing the effects of geometric variation and increasing the precision of functional attributes of products."

Söderberg et al. (2006)

Part variation

Part variation

Assembly variation

Part variation \rightarrow Assembly variation \rightarrow Functional variation

Fabricated assembly

Cast, forged and sheet metal parts

Welded together

Mathematical Modeling

Computer Programming

Mathematical Modeling

Discretization & Algorithm Selection

Computer Programming

Mathematical Modeling

Numerical Solution

Discretization & Algorithm Selection

Computer Programming

Mathematical Modeling

```
UçúΔ, #pDy‰È fl~-
: ~vå{¨•"vg/jBöÚöFõSö°[b[∫OÃ>—÷Ífiz¸G€-
ú4<YyJÛT...i/ÈÇ"ìgÚœåùïù}~. ~ (`€¢∂{ÁcŒfljoÔ∫t•"E
~ãÁ;º;Œ\Ú∏tÚ
€ÂW∏WöØ: mítí< ì"O«ªúªöÆπ\kπÓzΩμ{f~Èû7Œ,ÙΩ
'?[, ⟨ÿÔ⟨∏jċwtÛ—⟨G~ÖÉœ,ëıèCèôèÀÜ
\ddot{U}\hat{I}\hat{u}8>99,?r″È_BCede&\hat{u} ¢ \lambda E/\sim^{-1}\hat{I}\langle E-\hat{o}-\hat{u}\rangle
°óÚóìøm|•″íċîø€∆¬∆-æ...x31^ÙV°ì¦w‹wô£flo‰|
∏( h ±1S-B°ììì òÛ c3-€ cHRM
~Ï > wú]eμ ČœzûΩOÕÙfiÅP"CTÏEØ•#≈vm\AŞ£"%4Ei"
5Ñ™¢`iÇTTÈ)Ñ@í...Ã){ÔÁYø?^ôI@Ó → {•"7ØyMrfríÊü
Ôk≠Ô#™ä1∆cå1∆cå1/TŒficå1∆cå1∆ÛBfñ1∆cå1∆cåyA≥
Àcå1Δcå1Δ°†YÄeå1Δcå1Δc^-
,¿2∆cå1∆cå1/h`cå1∆cå1∆ò
∞å1∆cå1∆
ÖXΔcå1Δcå1ÊÕ,cå1Δcå1ΔÛÇñÿ
                             `å1∆cå1∆Û,≤‡ùG∫ëC
ít-îâ£&N6fÚËëS«é™OŸ|"\prod'\mu!\sqrt:"[{fiÚ\muÉ-~`ìèôæ,M"
                           ·ì≤È∆£"ßLª≈¶"∑ò1mÙ
¥~}í ø^QU°
```

Solution Representation

Numerical Solution

Discretization & Algorithm Selection

Computer Programming

Mathematical Modeling

Research Question I:

What barriers to implementing geometry assurance practices can be identified in the aero engine industry?

Research Question II:

How can geometry assurance methods be implemented in multidisciplinary simulations in industrial settings?

Research Question III:

What role should geometry assurance play in the early phases of aerospace component design?

Research Question I:

What barriers to implementing geometry assurance practices can be identified in the aero engine industry?

Barrier #1:

Barrier #1: Model Form Error

Model Form Error

Barrier #2:

Barrier #2:Discretisation Error

Discretisation Error

Discretisation Error

Barrier #3:

Barrier #3: Backwards Incompatibility

Backwards Incompatibility

Barrier #4:

Barrier #4: Forward Applicability

Forward Applicability

Research Question II:

How can geometry assurance methods be implemented in multidisciplinary simulations in industrial settings?

#1: The parametric point method

Reconstructing the geometry...

Models

1st gen -Papers A and B

2nd gen -Paper C

3rd gen - Papers D-G

#2: Integrated simulation environment

Nominal Max Left Right

Material fatigue

de Havilland Comet 1 crash, Jan 10th 1954

Genetic algorithms (Papers D, E and G)

Genetic algorithms (GA) are search procedures that mimic the mechanics of natural selection and genetics (Goldberg 2013).

A combinatory problem

- 11 vanes
- 10! = 3,628,800 different combinations!
- 10 minutes per fatigue life simulation \approx 70 years of simulations

Paper D

Results

Max von Mises stress

Paper E

Let's change a design parameter!

Max von Mises stress

Paper G

Research Question III:

What role should geometry assurance play in the early phases of aerospace component design?

Physical System (Existing or Proposed)

Physical System (Existing or Proposed) Conceptual Modeling Mathematical Modeling Activities Activities System/Environment Specification Partial Differential Equations (E Uncertainties and Acknowledged Errors) tainties) Solution Representation Auxiliary Ph **Numerical Solution** Activities ostraction ations ies) and E Activites Input Preparation fication Boun ditions (Unacknowledged Errors) Cour Spatial and Temporal Convergence (Acknowledged Errors) Module Design and Coding Nondeterministic Specification istic representations Errors) (Unacknow Iterative (nce (E Uncertainties and Acknowledged Errors) (A and E Uncertainties) rors) Linkage rrors) Nondetermin Convergence Discretization and (Acro owiedged Errors) Alghorithm Selection Computer d-off Accumulation **Computer Programming** (Acknowledged Errors) Activities Data Interpretation (Unacknowledged Errors) Activites Discretization of PDEs (Acknowledged Errors) Input Preparation (Unacknow Errors) Discretization a d ICs rors) Coding **Computational Results** rrors) Selecti Methods (Total Uncertainty and Error) agea Errors) Design of Imputer Experiments (Acknowledged Errors)

Conclusions

Conclusions - Research Questions I & II

Conclusions - Research Question III

- Geometric variation has the most major impact within thermal fatigue analysis.
- The case studies showed that simulation results were heavily affected by geometric variation in parts and assemblies.
- Welding exacerbates the effects of geometric variation.
- Genetic algorithms can be used to mitigate these effects.

Future work

- We should improve the quality and technological maturity of the multidisciplinary simulation environment, including its breadth as well its depth.
- To make this research more comprehensive, more researchers should be invited to contribute within their respective fields of expertise.
- The weakest links of the simulation chain are currently those activities that stray from the established and validated industrial design practices. Currently, these tools and methods lie within TRL 3-6. They need to be further matured.

Thank you!

