Uncertainty and Robustness in Aerospace Structures ANDERS FORSLUND Department of Product and Production Development CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2016 # In the aerospace industry... "...a move towards **probabilistic design practices** has been recognized as a **potential game-changer**, as it is understood to reduce **costs**, **risks** and **lead times**, while increasing the **confidence** in analysis tools, and the **quality** and **reliability** of products" Nasa report by Zang et al. (2002) # A different simulation approach... ### **Deterministic design** Probabilistic design Nominal operation Adds variation modeling Worst-case scenarios Uses probability distributions, etc. Safety factors Allows some probability of failure Easy to implement in simulation Difficult to implement in simulation Probabilistic design → Robust design → Geometry assurance ## Probabilistic design → Robust design → Geometry assurance "Robust design is an engineering methodology that aims at minimizing the effects of variation without eliminating the variation itself." Phadke (1995) ## Probabilistic design → Robust design → Geometry assurance "Geometry assurance is a set of activities aimed at reducing the effects of geometric variation and increasing the precision of functional attributes of products." Söderberg et al. (2006) ## **Part variation** ## **Part variation** # **Assembly variation** ## Part variation \rightarrow Assembly variation \rightarrow Functional variation Fabricated assembly Cast, forged and sheet metal parts Welded together Mathematical Modeling **Computer Programming** Mathematical Modeling Discretization & Algorithm Selection **Computer Programming** Mathematical Modeling #### Numerical Solution Discretization & Algorithm Selection Computer Programming Mathematical Modeling ``` UçúΔ, #pDy‰È fl~- : ~vå{¨•"vg/jBöÚöFõSö°[b[∫OÃ>—÷Ífiz¸G€- ú4<YyJÛT...i/ÈÇ"ìgÚœåùïù}~. ~ (`€¢∂{ÁcŒfljoÔ∫t•"E ~ãÁ;º;Œ\Ú∏tÚ €ÂW∏WöØ: mítí< ì"O«ªúªöÆπ\kπÓzΩμ{f~Èû7Œ,ÙΩ '?[, ⟨ÿÔ⟨∏jċwtÛ—⟨G~ÖÉœ,ëıèCèôèÀÜ \ddot{U}\hat{I}\hat{u}8>99,?r″È_BCede&\hat{u} ¢ \lambda E/\sim^{-1}\hat{I}\langle E-\hat{o}-\hat{u}\rangle °óÚóìøm|•″íċîø€∆¬∆-æ...x31^ÙV°ì¦w‹wô£flo‰| ∏(h ±1S-B°ììì òÛ c3-€ cHRM ~Ï > wú]eμ ČœzûΩOÕÙfiÅP"CTÏEØ•#≈vm\AŞ£"%4Ei" 5Ñ™¢`iÇTTÈ)Ñ@í...Ã){ÔÁYø?^ôI@Ó → {•"7ØyMrfríÊü Ôk≠Ô#™ä1∆cå1∆cå1/TŒficå1∆cå1∆ÛBfñ1∆cå1∆cåyA≥ Àcå1Δcå1Δ°†YÄeå1Δcå1Δc^- ,¿2∆cå1∆cå1/h`cå1∆cå1∆ò ∞å1∆cå1∆ ÖXΔcå1Δcå1ÊÕ,cå1Δcå1ΔÛÇñÿ `å1∆cå1∆Û,≤‡ùG∫ëC ít-îâ£&N6fÚËëS«é™OŸ|"\prod'\mu!\sqrt:"[{fiÚ\muÉ-~`ìèôæ,M" ·ì≤È∆£"ßLª≈¶"∑ò1mÙ ¥~}í ø^QU° ``` Solution Representation Numerical Solution Discretization & Algorithm Selection **Computer Programming** Mathematical Modeling #### **Research Question I:** What barriers to implementing geometry assurance practices can be identified in the aero engine industry? #### **Research Question II:** How can geometry assurance methods be implemented in multidisciplinary simulations in industrial settings? #### **Research Question III:** What role should geometry assurance play in the early phases of aerospace component design? ## **Research Question I:** What barriers to implementing geometry assurance practices can be identified in the aero engine industry? # Barrier #1: # Barrier #1: Model Form Error Model Form Error # Barrier #2: # **Barrier #2:**Discretisation Error **Discretisation Error** # Discretisation Error # Barrier #3: # Barrier #3: Backwards Incompatibility Backwards Incompatibility # Barrier #4: # Barrier #4: Forward Applicability Forward Applicability #### **Research Question II:** How can geometry assurance methods be implemented in multidisciplinary simulations in industrial settings? ## #1: The parametric point method Reconstructing the geometry... # Models 1st gen -Papers A and B 2nd gen -Paper C 3rd gen - Papers D-G ### #2: Integrated simulation environment **Nominal** Max Left Right ## Material fatigue de Havilland Comet 1 crash, Jan 10th 1954 ## Genetic algorithms (Papers D, E and G) Genetic algorithms (GA) are search procedures that mimic the mechanics of natural selection and genetics (Goldberg 2013). ### A combinatory problem - 11 vanes - 10! = 3,628,800 different combinations! - 10 minutes per fatigue life simulation \approx 70 years of simulations # Paper D ### Results Max von Mises stress ## Paper E Let's change a design parameter! #### Max von Mises stress # Paper G ### **Research Question III:** What role should geometry assurance play in the early phases of aerospace component design? ### Physical System (Existing or Proposed) #### Physical System (Existing or Proposed) Conceptual Modeling Mathematical Modeling Activities Activities System/Environment Specification Partial Differential Equations (E Uncertainties and Acknowledged Errors) tainties) Solution Representation Auxiliary Ph **Numerical Solution** Activities ostraction ations ies) and E Activites Input Preparation fication Boun ditions (Unacknowledged Errors) Cour Spatial and Temporal Convergence (Acknowledged Errors) Module Design and Coding Nondeterministic Specification istic representations Errors) (Unacknow Iterative (nce (E Uncertainties and Acknowledged Errors) (A and E Uncertainties) rors) Linkage rrors) Nondetermin Convergence Discretization and (Acro owiedged Errors) Alghorithm Selection Computer d-off Accumulation **Computer Programming** (Acknowledged Errors) Activities Data Interpretation (Unacknowledged Errors) Activites Discretization of PDEs (Acknowledged Errors) Input Preparation (Unacknow Errors) Discretization a d ICs rors) Coding **Computational Results** rrors) Selecti Methods (Total Uncertainty and Error) agea Errors) Design of Imputer Experiments (Acknowledged Errors) ## Conclusions ### Conclusions - Research Questions I & II ### Conclusions - Research Question III - Geometric variation has the most major impact within thermal fatigue analysis. - The case studies showed that simulation results were heavily affected by geometric variation in parts and assemblies. - Welding exacerbates the effects of geometric variation. - Genetic algorithms can be used to mitigate these effects. ### Future work - We should improve the quality and technological maturity of the multidisciplinary simulation environment, including its breadth as well its depth. - To make this research more comprehensive, more researchers should be invited to contribute within their respective fields of expertise. - The weakest links of the simulation chain are currently those activities that stray from the established and validated industrial design practices. Currently, these tools and methods lie within TRL 3-6. They need to be further matured. Thank you!