

THE EFFECT OF MICROSTRUCTURE AND DEFECTS ON MECHANICAL PROPERTIES OF TI6AL4V WELDS PRODUCED BY DIFFERENT PROCESSES

Sakari Tolvanen Robert Pederson Uta Klement

BACKGROUND

Fabricated aeroengine components enable

- 1. design of lighter aeroengines with improved performance
- 2. Lower buy-to-fly ratio

Lower environmental impact and economical benefits

High quality welds are prerequisite for fabrication technologies

WELDING OF TITANIUM ALLOYS - TI6AL4V

Most used titanium alloy in aerospace industry

Reactivity at elevated temperatures

Has the best weldability of $\alpha + \beta$ alloys

Single phase solidification

 Highly resistant to solidification and liquation cracking related cracking

Complex microstructures in continuous cooling Porosity

WELDING PROCESSES

FATIGUE IN WELDS

Lower fatigue performance and high scatter due to

- Discontinuations
- Defects
- Brittle phases
- Distortions
- Residual stresses
- Stress concentrations

Incomplete penetration

AIM OF THE WORK

What kind of microstructures are produced with different weld processes? What kind of defects exist for different processes(/parameters)? How do different microstructures effect on mechanical properties? What size and distribution of defects effect mechanical properties?

EXPERIMENTAL PROCEDURE

Material

4 mm thick AMS4911 Ti-6Al-4V sheet

Welding

- TIG, PAW, LBW, EBW
- Post weld heat treatment at 704°C for 2h
- Machining

Mechanical testing

- Tensile testing
- Fatigue testing
 - Load controlled at at RT and 250°C in air
 - R=0

Microstructure

OM, SEM, microhardness

Fractography

Location and size of crack initiation sites

MACROSTRUCTURE

FUSION ZONE MICROSTRUCTURE

	TIG	PAW	EBW	LBW
FZ width	12.3/7.	7.3/5.8	3/3 mm	3/1.8 mm
top/bott om	5mm	mm		
HAZ width	2 mm	1.8 mm	1.8 mm	1.6 mm
Prior-β grain size	3 mm	2 mm	1.5 mm	1 mm
GB-α	1	1	Thin/	Thin/
	µm/conti	µm/conti	uncontinuo	uncontinu
	nuous	nuous	US	ous
α lath	1.2-1.3	1.2-1.3	0.8-1 µm	0.8-1 µm
spacing	μm	μm		

MICROSTRUCTURE - EBSD

- Euler angle presentation
- PAW basket weave
- TIG combination of colony and basket weave structure

MICROHARDNESS

Distance from weld centre line (µm)

TENSILE PROPERTIES

Process	Test temp (°C)	Yield strength (normali zed)	UTS (normali zed)	Elongati on A4 (%)
Base material	20	0.95	1.00	16,4
Base material	250	0.72	0.78	17,8
EBW	20	0.92	0.99	10
EBW	250	0.67	0.78	15
LBW	20	0.91	0.97	10
LBW	250	0.66	0.76	12
TIG	20	0.85	0.94	7
TIG	250	0.58	0.73	14
PAW	20	0.84	0.93	9
PAW	250	0.58	0.71	14

LOW CYCLE FATIGUE

How do different microstructures effect on mechanical properties? What size and distribution of defects effect mechanical/LCF properties?

EFFECT OF WELD GEOMETRY

FRACTOGRAPHY TIG&PAW

FRACTOGRAPHY EB

FRACTOGRAPHY LBW

FRACTOGRAPHY SUMMARY

Size [µm]	TIG	PAW	EBW	LBW
Surface				
initiation	3	2	24	9
0-100	3	3	4	15
100-200	10	3	-	3
200-300	6	-	-	-
300-400	4	-	-	-
400-500	1	-	-	-
600-700	-	LOF	-	3

EFFECT OF PORE SIZE AND LOCATION

EFFECT OF TEMPERATURE

X-RAY MICROSCOPY

Zeiss Xradia Versa 520

Optical magnification system (in contrast to x-ray tomography)

Scan times in examples 4-12 hrs

Voxel size down to 70 nm

CASE: TIG WELD FATIGUE SAMPLE

• Cycles to failure 13166

CASE: LASER WELD SAMPLE

Discontinued after 432 000 cycles No failure Largest pore 114 µm Smallest pore detected

CONCLUSIONS

Pores initiated cracks on nearly all the samples in PAW and TIG welds whereas in LB and EB welds most samples had crack initiation at the surface

Large pores and pores close to surface were the most detrimental to fatigue life

Microstructure & hardness have an effect on fatigue performance

- EB&LBW had better fatigue performance than TIG&PAW
- LBW had lot of porosity but only large pores initiated crack

FUTURE WORK

Predict fatigue life using LEFM XCT to identify critical defects

Effect of small boron addition in microstructure of Ti64 welds

THANK YOU FOR YOUR ATTENTION

Acknowledgements NFFP - The Swedish National Program for Aeronautical Technology

GKN Aerospace

Sakari Tolvanen

Chalmers University of Technology Department of Materials and Manufacturing Technology SE-412 96 Gothenburg, Sweden

sakari.tolvanen@chalmers.se