

Testing procedures for the evaluation of strain age cracking in nickel based superalloys

Fabian Hanning¹, Joel Andersson² Robert Pederson^{2,3}

¹Department of Materials and Manufacturing Technology Chalmers University of Technology, Gothenburg, Sweden ²Department of Engineering Science University West, Trollhättan, Sweden ³GKN Aerospace Sweden AB, Trollhättan, Sweden

Superalloys in aircraft engines

Motivation for strain age cracking research

- Production via assembly approach
 - Small cast and wrought parts joined together by welding
- Increased service temperature
 - Higher engine efficiency
 - More severe environment from materials point of view

Strain age cracking (SAC)

Weldability testing

- No standardised test method exists for strain age cracking
- A large number of tests has been developed
- Often poor correltion between methods

Weldability testing

Representative tests

• Simulative tests

◆As Cast ■1120°C - 4h ×1190°C - 4h *Wrought

Representative tests

- Often used in conjunction with repair welding
- Provides information on material performance
- Test mainly qualitative, but quantification possible to some extent
- Does not provide much insight into mechanism
- Can complement simulative tests

- Tests that simulate the conditions present during welding
- Mostly mechanical testing at elevated temperature
- Testing under controlled conditions
- Quantified information on influencing parameters (e.g. restraint) is available
- Results are more universally applicable than those from representative tests

Constant load rupture tests (CLR)	Time to failure measuredDoes not predict well
Stress relaxation tests Isothermal Anisothermal 	 Hard to create material rankings Can provide insight into ongoing mechanism
Stress to fracture tests	Does not indicate resistance towards SAC
Tests measuring ductility	Can be used to rank materialsDifferent methods exist

Constant heating rate test (CHRT)

- Simulates post weld heat treatment (PWHT)
- Ductility is measured to create material ranking
- Material rankings can be created
- Does not include HAZ microstructure

J. B. Carlton and M. Prager. Variables Influencing the Strain-Age Cracking and Mechanical Properties of René 41 and Related Alloys. WRC Bulletin 1970;150:13–23.

Combination with stress relaxation

- Includes HAZ and stress relaxation ٠
- Includes restraint ٠
- Very fast heating rate to PWHT temperature ٠
- Ductility measured after 8h aging time ٠

Time

Alloy 718

0:30:00 0:40:00 0:50:00 1:00:00 1:10:00 1:20:00 :30:00 1:40:00 1:50:00 2:00:00 2:10:00 2:20:00 :30:00

8 0:20

150 100 50

> 00:00:0 0:10:00

Modified CHRT

- Includes HAZ simulation
- HAZ simulation yields information on HAZ performance
- Does not include restraint

900

Temperature [°C]

950

1000

J. Andersson. *Weldability of Ni-Based Superalloys*. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives, The Minerals, Metals & Materials Society; 2014, p. 249–62.

750

800

F. Hanning. Strain Age Cracking of Nickel Based Superalloys. Master Thesis. Chalmers University of Technology, 2015.

Summary

	+	-
Representative tests	Represent actual welding conditions	Large scatter Hard to quantify results No insight into mechanism
Simulative tests	Enable precise parameter control Lower scatter Reproducible	Do not cover all aspects of SAC in single test

- Numerous tests have been developed
- No universally applicable method exists to cover all aspects of SAC
- CHRT type test seems to be best choice in terms of simplicity and reproducability
 - Should include HAZ simulation
- Combination of different tests is needed to obtain a deeper understanding of ongoing mechanisms

Thank you!