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“vnrid Str“ct“res Aluminium Alloys (AA)

B Carbon-Fibre Composite (CFRP)
B Glass-Fibre Composite (GFRP)
B Aramid-Fibre Composite (AFRP)

Structures composed of two
or more materials.

Distinct interface where the

materials are joined,
commonly by bolted joints.




GFRP-AA hybrid structures

Significant differences between CFRP Structural issues:
and AA.
» Thermal expansion properties > Thermally induced loads
Ocrrp = 2.1-10° °C, > Difficult to predict structural failure
Opp = 23.4:106 °C-1 Hybrid modes
» Failure mechanisms » Buckling and permanent deformations
» Sensitivity to loading type ::> » Testing (accounting for scatter,
(tensile, compressive, out-of-plane) significant load states and levels)
> Statistical variability » Design and analysis methods
> Defect resistance Etc.
» Anisotropy
» Density
» Environmental sensitivity
» Design and airworthiness requirements

Etc.




structural integrity assessment
TESTING  ANALYSIS

» Aims to ensure
airworthiness, structural
integrity and durability.
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NFEPG Effect of thermally induced bolt load on
the bearing strength of CFRP

» At elevated temperature,
hybrid CFRP/AA structures
develop thermally induced
loads due to agprp << pp

» In bolted joints, this leads to
a biaxial bearing load state,
F+Fy,

Research goals:

» Characterization and modelling of the quasi-static
and fatigue bearing failure in CFRP.

» Influence of F;, on the static and fatigue bearing
failure in CFRP.




Biaxial testing at elevated temperature

» Test rig, where a mechanical
load, F, and a constant
thermally induced load, F,
were applied by mechanical
actuators.

Specimen

» Two-bolt, quasi-isotropic
CFRP specimens.

» Uniaxial and biaxial static
and fatigue tests at 90°C.
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Observed failure mechanisms in static tests

» Fractography of the
bearing plane of
specimens loaded to 90%
of the static failure load.

» Main failure mechanisms |
fiber kinking and matrix o ¢¢ ﬁo
cracking, contained in ;
shear bands.

|Hole edge §
&

> Delaminations and
micro-cracking also
observed.




FE-modelling of static bearing failure
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FE-modelling of static bearing failure in structure
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Observed failure mechanisms in fatigue tests

» Fractography at half-life
shows that ply fracture is
preceded by extensive
micro-cracking of the matrix
and of the fiber-matrix
interfaces.

» Continuous out-of-plane
bending of the plies is
observed.

» Fatigue failure differs from
static failure.

Matrix cracks No cracks




Observed failure behavior in fatigue tests

Uniaxial case, Fpa, = 70 kN.
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» Considerable softening of

the laminate and hole

elongation are observed £
continuously during the z 21
cycling in both constant and 215
variable amplitude loading. E‘ 1
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» The fatigue damage is

generated during the whole 0 I ) 3 5 0
N [cycles]
Biaxial case, Fue = TOKN.

process and not at a
specific point in time, which
IS consistent with matrix
micro-cracking.

Displacement [mm]

0 : : : : : , -
0 500 1000 1500 2000 2500 3000 3500 4000
N [eyeles]




Fatigue failure modelling
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Fatigue life predictions CA

>

Biaxial case gives shorter fatigue life
for a given maximum mechanical
bearing stress, 0°.-

Biaxial case gives longer fatigue life
for a given maximum resultant
bearing stress, 0 ¢¢ max:

Sizing of the biaxially loaded joints,
based on 0° ¢ nay USING UNiaxial
fatigue data is conservative.
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Fatigue life predictions VA

loading.

Peaks and troughs, percentage
of maximum peak load [%]

—

00

s

oo
o

o
=

=
<

(o]
(=]

! O  Exp. uniaxial
@ Exp. uniaxial bolt failure
900+ ©  Exp. biaxial o=t
. . ©  Exp. biaxial bolt failure o=p
» Same trend is observed in VA Sim. uniaxial
8004 — — — Sim. biaxial
) — Miner’s rule uniaxial
= — — — Miner's rule biaxial
) ] _ 2700f
» Larger scatter in VA loading. )
600 T,=90°C
f=2H=z
U= 197 kJ/mol
S00F =27 kKI/MPa/mol
g = 0.304-107 °C/MPa’s
n=0.143
400 - :
0 2 4 6
log{FLIGHTS) [—]
1000, T T r
‘ T E O Exp. uniaxial
——— Shfalstaff o Exp.uniaxial bolt failure
——— Shfalstaff 30% gonH ©  Exp. biaxial
1 @ Exp. biaxial bolt failure
Sim. uniaxial
_ gooH — — — Sim. biaxial
=
2
g 700
-I:b?_f
600F T,=90°C
f=2Hz
LU= 197 kl/mol
X = = 4 500F  y=2.7 kl/MPa/mol
10 10 10 10 w=0.304:10" °C/MPa’s
Number of exceedances n=0.143
400 : - :
0 2 4 6

log(FLIGHTS) [-]




Thank you for your attention !




