

Methodology for fatigue damage prediction in NCF composites for applications in aircraft engines

<u>Andrejs Pupurs</u>^{1,2}, Janis Varna ¹, Mohamed Loukil ², Fredrik Edgren ³, Mats Delin ³

¹ Luleå University of Technology, Luleå, Sweden
² Swerea SICOMP, Piteå, Sweden,
³ GKN Aerospace, Trollhättan, Sweden

Composites

- Polymer composites: materials of the future
- Constituents: glass, carbon fibers, epoxy resin
- High specific stiffness and strength
- Superior fatigue life and performance
- Applications in aerospace, aircraft, wind power industries, etc.

Introduction

- The unparalleled specific stiffness and strength have made polymer composites an obvious choice in aircraft engines
- Modern turbofan engines contain composites in total weight share of 10-30%.

UNIVERSITY

OF TECHNOLOGY

Introduction

- GKN Aerospace Engine Systems develops technology for design and manufacturing of composite structural for commercial and military aircraft engines
- Important part in this development is to create an understanding for material behavior and models that can reliably predict structural behavior and function

UNIVERS

OF TECHNOLOGY

Transverse cracks and delaminations

- Transverse cracks and delaminations develop in the plies of laminated composites during the service life
- Thermo-elastic properties of the laminate are degraded
- Damage propagation determines final failure and fatigue life
- Complex evolution of damage

CHNOLOGY

Project

- Methodology to design composite structures resistant to intra- and interlaminar damage.
 NFFP6 project, acronym: MERINDA
- Duration: September 2014 September 2017
- Collaboration between Luleå University of Technology, Swerea SICOMP and GKN Aerospace

Objective

- Develop new methodology for prediction of initiation and evolution of damage in non-crimp fabric (NCF) composites for aircraft aero engine applications
- Focus: Initiation and evolution of transverse cracks under mechanical fatigue loading

Aattsson et al, Composites Part B, 2007

Material

- Carbon fibre\epoxy resin laminates, manufactured from unidirectional Non Crimp Fabrics (NCF)
- Bundle thickness 0.25mm, width 3.5mm
- Lay-ups: [0/90]_S, [+45/0/-45/90]_S, [+45/0/-45/90]_{2S}
 - Layer properties

Ε _L	[GPa]	120
Ε _τ	[GPa]	9.18
G _{LT}	[GPa]	3.94
ν_{LT}	[-]	0.311
α_{L}	[1/°C]	3.20E-07
α_{T}	[1/°C]	3.16E-05

OF TECHNOLOGY

Micro-damage in NCF composites

Experimental work

- Lay-ups:
 - [0/90]_S
 - [+45/0/-45/90]_S
 - [-45/90/+45/0]_S
 - [+45/0/-45/90]_{2S}

IVERSITY

the part and the

			ests,	tigue te	nsion fa	sion-ter	Ten		
	f=5Hz	R = 0.1,	%, etc. F	ε = 0.5	= 0.4%,	evels ε	strain l	ed max.	Applie
				cycles	ber of c	Num			
U		106	10 ⁵	104	10 ³	100	50	10	1

OF TECHNOLOGY

Damage development in quasi-static tension [0/90]_s

Pre-cycled = 1 million load cycles at 0.2% max strain

Damage development in quasi-static tension [45/0/-45/90]_s

The northernmost University of Technology in Scandinavia World Damage development in quasi-static tension [45/0/-45/90]_s

Virgin: cracks in -45°layer

Damage development in quasi-static loading [-45/90/45/0]_s

 Transverse stress σ_T in layers found using laminate theory: mechanical stress + residual thermal stress

 $\sigma_T = \sigma_{mech} + \sigma_{th}$

 $\Delta T = 180^{\circ}C - 23^{\circ}C = 157^{\circ}C$

Weibull analysis

$$P_{f}(\sigma) = \frac{M_{failed}(\sigma)}{M} \qquad P_{f} = 1 - \exp(-\left(\frac{\sigma}{\sigma_{0}}\right)^{m})$$

 σ_0, m Weibull parameters

Damage development in quasi-static loading [-45/90/45/0]_s

	90 layer	45 layer	-45 layer
σ_0	165.04	102.88	99.92
m	9.39	15.99	14.55
	90 layer	45 layer	-45 layer
σ_0	90 layer 152.91	45 layer 103.51	-45 layer 93.72

Damage development in quasi-static loading [-45/90/45/0]_s

Hypothesis

- Location of the first crack is the same in quasistatic as in fatigue loading
- This is the position with less favorable local fiber distribution (stress concentration, bad impregnation)
- This position is random
- Weibull transverse strength distribution

Weibull analysis in fatigue

90 layer = Chain of fragments

Damage development in fatigue

Weibull analysis in fatigue

$$P_f = 1 - \exp(-\frac{L}{L_0} N^n \left(\frac{\sigma}{\sigma_0}\right)^m)$$

 $\ln(-\ln(1-P_f)) = n\ln(N) + b$

Cracks in 45-layers

Cyclic N=10⁶, strain 0.4%

Cracks in 90 –layer Cracks in 45-layer

> Upper picture: specimen edge Lower: inside the specimen (by polishing)

Damage inspection with micro CT

Original lay-up: [-45/90/45/0]s yz view (edge view): [0/-45/90/45]s

Damage state in layers

Schematic vizualization, after 1 million load cycles at 0,5% strain

Conclusions

- Fatigue damage prediction tool has been developed based on Weibull analysis
- Methodology can potentially save significant time of fatigue testing
- Formation of transverse cracks in 45 layers is a complex mechanism
- Further tasks: Monte Carlo simulations, optimizing the form of Weibull based equation

ECHNOLOGY

Acknowledgement

The presented work has been funded by VINNOVA within the NFFP program

 \mathbf{L}

The northernmost University of Technology in Scandinavia World-class research and education

Thank you for your attention!

