AEROSPACE TECHNOLOGY CONGRESS 2016 Swedish aerospace technology in a globalised world

October 11-12, 2016 - Solna - Stockholm

DAMAGE AND FAILURE PREDICTION OF COMPOSITE ROTORCRAFT BLADES UNDER COMBINED BENDING-TORSION LOADING

Sylvain Langlo and Carlos A. Cimini Jr.

Department of Mechanical Design Engineering, UNICAMP, BRAZIL Department Structural Engineering UFMG, BRAZIL

> <u>Presenter</u>: Carlos A. Cimini Jr. Department Structural Engineering UFMG, BRAZIL

OUTLINE

- Motivation
- Objective
- Specimen Geometry & Instrumentation
- Test Setup
- Test Problems
- FE Model
- Results Vertical Displacement
- Results Longitudinal Strain
- Results Torsion Angle
- Conclusions

MOTIVATION

- New generation of dynamic composite parts
- Necessity to assess damage tolerance
- Static and fatigue
- Application for composite helicopter blades
- Technology Readiness Level (TRL ~ 4)

COMPOSITE HELICOPTER BLADES

Δ

A

Fibreglass roving spar Rib

4

Foam core

TECHNOLOGY READINESS LEVEL

DEVELOPMENT TIME

DAMAGE SIMULATION

- Notch More severe than usual operational damage
- Stress concentration Damage evolution
- Static & Fatigue

OBJECTIVE

- Use of notched sandwich panels as benchmark for helicopter blade design
- Perform experimental bending-torsion tests in notched sandwich specimens
- Use FE numerical tools to simulate progressive damage
- Limited to static bending-torsion loading
- Compare model predictions to experimental data

SPECIMEN – GEOMETRY & MATERIAL

<u>Surfaces</u>: Glass Fiber / Epoxy Fabric – Two plies @ 45° each $E_1 = 23 \text{ GPa}; E_2 = 21 \text{ GPa}; G_{12} = 6.7 \text{ GPa}; v_{12} = 0.3$ X = 360 MPa; X' = 360 MPa; Y = 540 MPa; Y' = 540 MPa; S = 95 MPa;

9

TEST SETUP

2

Loading: coupling bending-torsion

B _(mm)	D _(mm)	D _{e (mm)}	D _{1 (mm)}	D _{2 (mm)}	E _{c (mm)}
340	925	325	240	300	60

H _{1 (mm)}	H ₂ (mm)	L _{ь (mm)}	
500	500	300	

TEST PROBLEMS

- Hydraulic jack failure
- Weight-step loading
- Specimens ill-designed
- Failure unexpectedly occurred in clamping region
- No progressive failure observed at notch tips
- Discrete loading failure considered as last step
- Limited comparison model simulation vs. test results

FE MODEL

- 16,562 Nodes
- 5,380 3D Shell (Surfaces) + Solid (Core) Elements

RESULTS - VERTICAL DISPLACEMENT

RESULTS - VERTICAL DISPLACEMENT

 \boldsymbol{U}_{3}

DT – Displacement Transducer

RESULTS - VERTICAL DISPLACEMENT

16

RESULTS - LONGITUDINAL STRAIN

UNICAMP

INCIPIT VITA NO

EMBR

Results - Longitudinal Strain

18

RESULTS - LONGITUDINAL STRAIN

19

RESULTS - TORSION ANGLE

CONCLUSIONS

- Predictions presented a more rigid model than the test specimen for global vertical displacements
- Longitudinal strains at notch tips were lower than model predictions
- Torsion angle could be captured by model prediction
- Test problems limited results quality
- FE model too simple to predict test data accurately

FOLLOW-UP WORK

- On-going project
- Conclusion of test program
- More instrumentation and DIC for more quality test results
- Test set up more robust
- Limited model needs improvement
- Multiscale analysis with micromechanical failure criterion

THANK YOU!

cimini@ufmg.br