

Towards vibration measurement applications based on phase-OTDR technique

PhD student: Carolina Franciscangelis

Supervisor UNICAMP: Prof. Dr. Fabiano Fruett

Supervisor Acreo: Walter Margulis

Supervisors Saab: Ingemar Soderquist and Tonny Nyman

Summary

- Distributed optical fiber sensors
- Motivations
- Rayleigh scattering theory
- Phase-OTDR: basic experimental setup

Applications

- SHM: Composite material with embedded optical fibers
- SHM: Optical fiber coil mesh for 2D and 3D surfaces monitoring using phase-OTDR
- Security & SHM: Real-time distributed optical tuneable microphone based on phase-OTDR

Conclusion

Distributed optical fiber sensors

- Based on light scattering phenomena: Rayleigh, Raman and Brillouin;
- Requires access to only one end of the optical fiber;

Motivations: Distributed optical fiber sensors

Advantages

- Electromagnetic immunity, feasibility for hazardous inviroments;
- Adaptative range and resolution, high reconfigurability;
- Small dimensions;
- Can be embedded inside structures;
- Feasible for multiparameter monitoring;
- Track simultaneous events;

Rayleigh scattering theory

Basic phase-OTDR (DAS) configuration

Rayleigh scattering theory

Phase-OTDR: basic experimental setup

SHM: Composite material with embedded optical fibers

SHM: Composite material with embedded optical fibers

Experimental results: vibration measurements in composite material

Experimental results: vibration measurements in composite material

Experimental results: vibration measurements in two layers of composite

Experimental results: vibration measurements in two layers of composite

SHM: Optical fiber coil mesh for 2D and 3D surfaces monitoring using phase-OTDR

- Characterization of avionics surfaces in ground testbeds
 - 2D or 3D surfaces
- Advantage over multiple point sensors: cheaper and easier to multiplex data;
- Spatial resolution is limited by the coil diameter and can be around a few centimeters;

mHz vibration frequency sensitivity

mHz vibration frequency sensitivity

Real-time distributed optical tuneable microphone based on phase-OTDR

- Real-time detection of intruders: footsteps, vehicles, digging machines;
- Sound is created through vibrations!
 - Novel proposal: phase-OTDR technique applied as great time distributed tuneable microphone;
 - Applications
 - Surveillance: perimeter security of military facilities, borders and power plants;
 - Structure health monitoring: analysis of the structure status by evaluating how it sounds;
 - Industrial facilities: detecting malfunction in multiple machines in an workshop;

Real-time distributed optical tuneable microphone based on phase-OTDR

Classic music

Conclusion

Distributed optical fiber sensing as key enabling technology!

Thank you!

carolina.franciscangelis@acreo.se

Conselho Nacional de Desenvolvimento Científico e Tecnológico

			Spatial	Detection	Laser	Detection	Optical
Date	REF	Sensing Range	Resolution	Bandwidth	linewidth	Scheme	Amplification
Mar-93	[28]	Intrusion Sensing Apparatus described					
Aug-98	[34]	~10 km	~10 m	Intrusion	YAG laser	Direct	-
Sep-98	[30] ¹	6 km	400 m	30.5 Hz	<50 kHz	Direct	-
Jun-05	[32]	12 km	1 km	Intrusion	<3 kHz;	Direct	-
Dec-05	[39]	12 km	200 m	Intrusion	<3 kHz;	Direct	-
Apr-07	[33]	19 km	200 m	Intrusion	<3 kHz;	Direct	-
Apr-08	$[68]^{1}$	14 km	50 m	Intrusion	20 kHz	Direct	-
Oct-09	[63] ¹	62 km	100 m	Intrusion	<3 kHz;	Direct	1st Raman
Nov-10	[25]	1.2 km	5 m	1 kHz	20 kHz	Coherent	-
Aug-11	[26]	~200 m (PMF)	1 m	2.25 kHz	20 kHz	Coherent	-
Nov-11	[37] ¹	3 km	5 m	200 Hz	2 kHz	Coherent	-
Apr-12	[41]	1 km	0.5 m	8 kHz	4 kHz	Coherent	-
Aug-12	[40]	200 m tested; (estimated: up to 10 km)	0.2 m	Freq. Sweep between 500-1000 Hz (nonstacionary)	535 kHz	Coherent	-
Jan-13	[67] ⁽³⁾	1 km	5 m ⁽³⁾	3 MHz ⁽³⁾	<50 kHz	Coherent	-
Feb-13	[46] ⁽²⁾	74 km	20 m	Intrusion	2 kHz (?) ⁽²⁾	Direct	1st Raman
Jul-13	[69]	<1 km	2 m	500-5000 Hz	Distributed- Feedback (DFB) laser	Direct	-
Sep-13	[36]	1 km	3 m	Intrusion	<50 kHz	Direct	-
Oct-13	[66] ⁽³⁾	1.15 km	5 m ⁽³⁾	6.3 MHz ⁽³⁾	<50 kHz	Coherent	-
Dec-13	[3]	1.25 km	5 m	40 kHz	1.6 MHz	Direct	-
Apr-14	[5]	100/125 km	10 m	390/250 Hz	1.6 MHz	Direct	1st Raman
May-14	[38]	131.5 km	8 m	375 Hz	3 kHz	Coherent	1st Raman
Jun-14	[43] ⁽¹⁾	124 km	40 m	Intrusion	100 Hz	Coherent	Brillouin
Jun-14	[44] ⁽¹⁾	175 km	25 m	Intrusion	100 Hz	Coherent	1st+2nd Raman +Brillouin
lup 14	[61] ⁽¹⁾	125 km	10 m	250 Hz	1.6 MHz	Direct	1st Raman
Jul1-14	[01]	125 km	10 m	380 Hz	1.6 MHz	Direct	2nd Raman
		10 km	20 m	Sampling: 4·10 kHz ⁽⁴⁾	Not specified	Coherent	-
Jun-14	[65] ^(1, 4)	1.1 km	10 m	Sampling: 2·80 kHz ⁽⁴⁾	<50 kHz	Coherent	-
Jun-14	[64] ^(1, 4)						

H. F. Martins PhD thesis