ULTIMATE - A Chalmers led European effort on ultra-efficient propulsion

Tomas Grönstedt Chalmers University of Technology

The ULTIMATE project is funded by the European Union H2020 programme under GA no. 633436.

Ultra Low emission Technology Innovations for Mid-century Aircraft Turbine Engines

Exploring synergistic combinations of radical core technologies

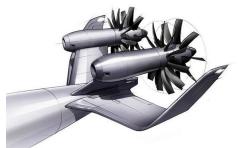
- Call: MG-1.5-2014 Breakthrough innovation for European Aviation
- **Budget:** EUR 3,138,121.88 (100% financed by the EU)
- Duration: 36 months, September 2015 August 2018
- Consortium: 10 partners (4 Industries, 4 Universities, 1 research institute and 1 technology management company)
- Coordination: Chalmers University of Technology

Success Stories

The most recent Success stories from EU Research.

Tomas Grönstedt

Chalmers University of Technology Department Applied Mechanics 412 96 Gothenburg, Sweden e-mail: <u>tomas.gronstedt@chalmers.se</u> Tel: +46 704 92 33 39


Year 2050 projections

Powerplant for intercontinental configuration (architecture illustrated by

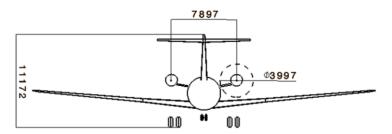
Rolls-Royce UltraFan for 2025)

Intra-European configuration

Technology assumptions for 2050

- Turbomachinery efficiency; 0
- High Pressure Turbine Temperature Capabilities; Ο
- Characterization of Heat exchangers;
- Weight estimation and structural considerations Ο
- Reference cycles 0

Rolls-Royce R



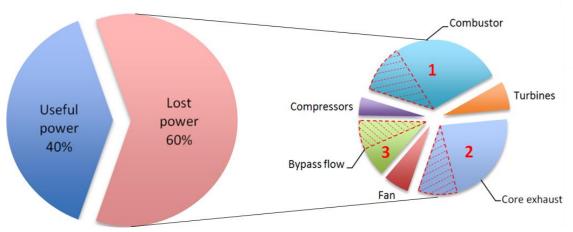
Year 2050 projections

Intercontinental

Intra-European configuration

- For the intercontinental year 2050 reference, we got a 45% fuel burn reduction to year 2000
- For the intra-European year 2050 reference, we got a 59% fuel burn reduction to year 2000
- ULTIMATE technologies are measured against these reference configurations
- Non-linear trade factors developed to decouple aircraft and propulsion simulations

P. Heinemann, P. Panagiotou, Patrick Vratny, S. Kaiser, M. Hornung and K. Yakinthos, "Advanced Tube and Wing Aircraft for Year 2050 Timeframe," in 55th AIAA Aerospace Sciences Meeting , Grapevine, Texas, USA, 2017


Approach

Losses in a state-of-the-art Turbofan

ULTIMATE will attack the major loss sources "the Big Three"

- Combustor irreversibilities (1)
- Core exhaust heat losses (2)
- Excess of kinetic energy in the bypass flow (3)

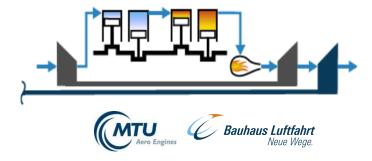
"Exergy, denoted ε , of a steady stream of matter is equal to the maximum amount of work obtainable when the stream is brought from its initial state to a state of thermal and mechanical equilibrium with its environment"

The Pratt & Whitney

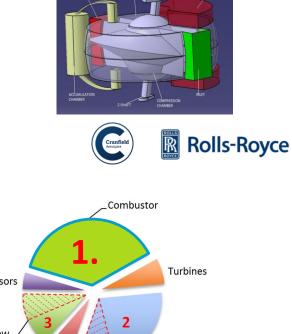
geared turbofan (GTF)

The red cross-hatched areas may be captured – HOW?

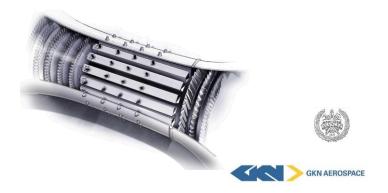
Grönstedt, T., Irannezhad, M., Lei, X., Thulin, O., Lundbladh, A., "First and second law analysis of future aircraft engines". Journal of Engineering for Gas Turbines and Power", 136 (3), 2014


Grönstedt, Tomas, et al. "Ultra Low Emission Technology Innovations..." ASME Turbo Expo 2016, GT2016-56123

1. Combustor Irreversibility

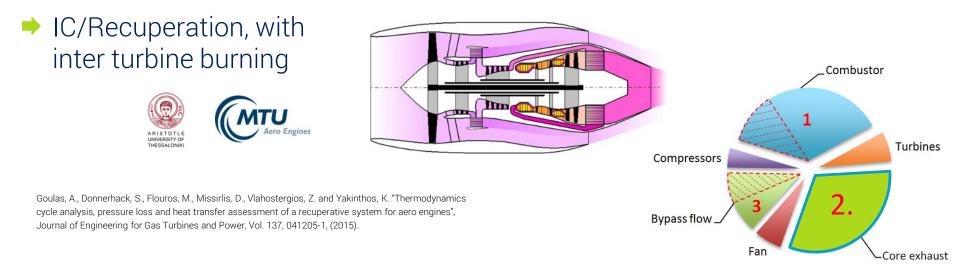


Attack loss source #1


Piston based composite cycles

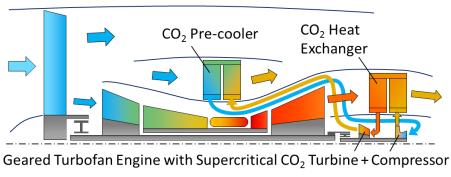
Nutating disc composite cycles

Pulse detonation combustion



2. Core exhaust heat losses

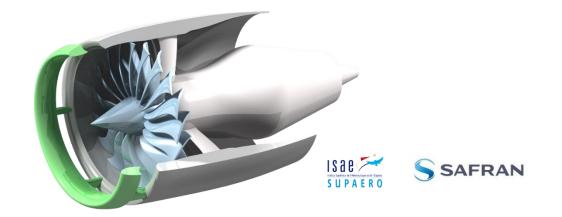
GKN AEROSPACE



Attack loss source #2

➡ Intercooling

Bottoming cycle


Rolls-Royce

3. Excess of Kinetic Energy

Attack loss source #3

 Slotted nacelle concept

The Boxprop

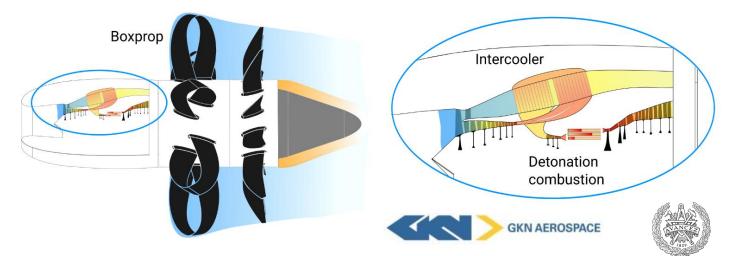
- Potential to reduce noise, by drastically reducing tip vortex strength.
- Retain propulsive advantages of standard open rotor configuration

Wake energy analysis method applied to the Boxprop propeller concept, Capitao Patrao, A., Grönstedt T., Avellán, R., Lundbladh, A., Aerospace Science and Technology, Aerospace Science and Technology, vol. 79, 2018

Exploring synergies

Synergies and down-selection

- Combine large
 loss attackers
- Isolate concepts where synergies exist

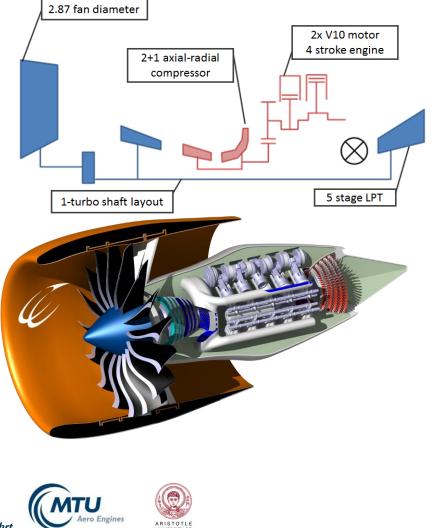

	Major cycle variants				Bottoming cycles	
Recuperation	Primary combustion	Intercooled	Secondary combustion		No bottoming	Bottoming
NO	Constant pressure	NO	NO		Reference Brayton	Supercritical CO ₂ [13]
			YES			
		YES	NO			
			YES			
	Pressure rise combustion	NO	NO			
			YES			
		YES	NO		Intercooled press. rise [14, 15]	
			YES			
	Pressure rise with power off-take	NO	NO			
			YES			
		YES	NO			
			YES			Air bottoming [12]
YES	Constant pressure	NO	NO	_		[++]
			YES			
		YES	NO		IRA engine [8, 14]	
			YES			
	Pressure rise combustion	NO	NO			
			YES			
		YES	NO			
			YES			
	Pressure rise with power off-take	NO	NO			
			YES			
		YES	NO			
			YES			

Positive synergy exists

- Conceptual design observations
 - Modest OPR in the open-rotor configuration results in substantial fuel-burn improvements with pulsed detonation combustion alone

• Delta fuel burn over year 2050 reference is up to -10.0%

Intercooled composite cycle engine


Key findings:

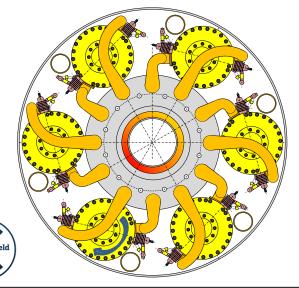
- Intercooling drastically reduces CCE's weight and thus improves fuel burn
- Recuperation extensively investigated but no benefit found

۲

- **Two banks** of **four stroke V-10 piston engines** drive the HPC. The piston engines can be fit inside the core engine cowling.
- **Buffering volumes before and after** piston engine section to balance piston engine pressure fluctuations

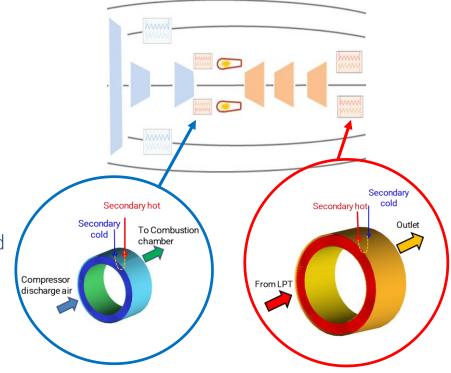
reference is 12.5%

Delta fuel burn over year 2050


Nutating disc topping combustor to: Establish pressure rise combustion Constant volume combustor type cycles gives cold core exhaust

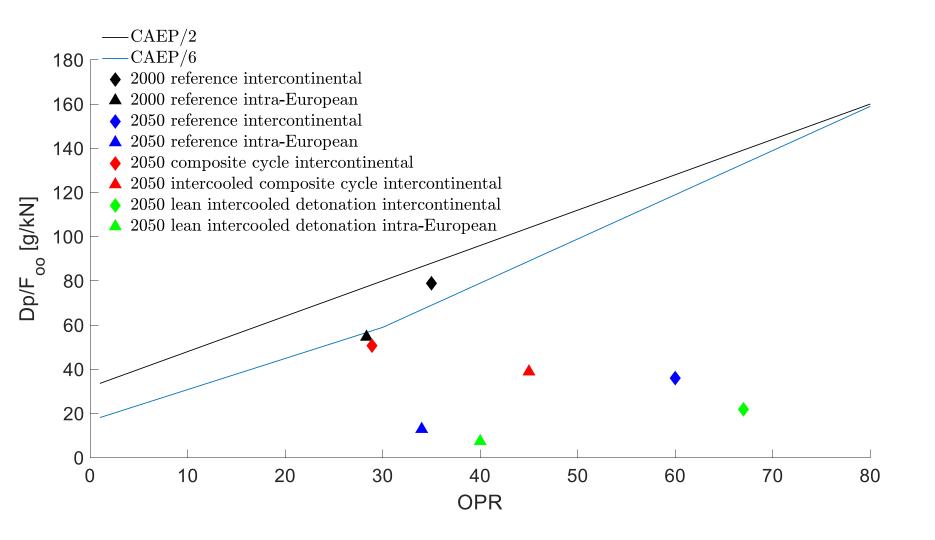
- Key findings:
 - Higher power density leads to a reduced weight penalty as opposed to Piston concepts.
- Nutating Disc Core Module

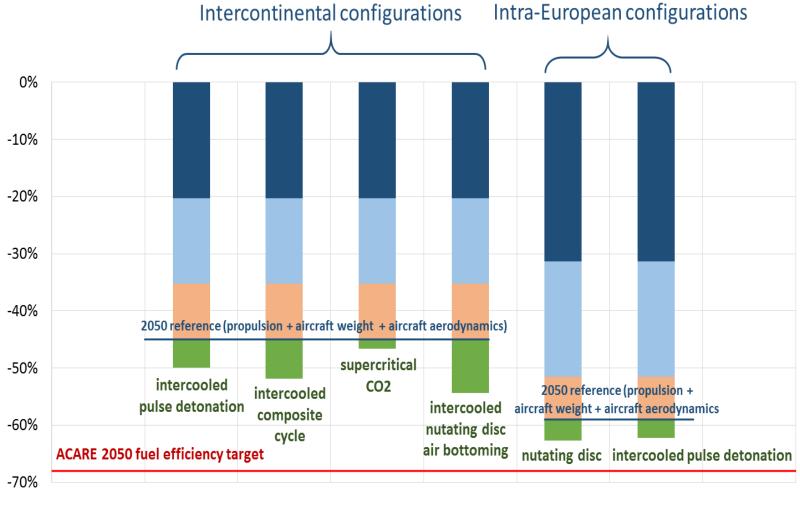
Geared Open Rotor Engine with Nutating Disc Core Modules


- Intercooler may not provide sufficient benefit to pay its way onto the engine
- Key challenges:
 - o Accurate estimation of the overall weight.
 - Accurate prediction of the heat release in the combustion chamber at design and off-design conditions
- Delta fuel burn over year 2050 reference is close to 15.0%

Intercooled recuperation with secondary fluid recuperation

- Key synergies exploited:
 - o Recuperation using a secondary fluid
 - o Intercooling
- Key findings:
 - Increased heat transfer using a secondary fluid with favourable heat transfer properties
 - Independent optimization of the secondary fluid system for heat transfer enhancement
- Key challenges:
 - Secondary fluid compatibility with recuperators materials and safety treatment
 - Recuperators weight and volume reduction
- Delta fuel burn decrease over year 2050 reference is up to: ~ -5%





NO_x emissions

CO₂ emissions reductions potential

Propulsion contribution to 2050 config.

Liquid fuels will dominate for the better part of 21st century

- Efficient cores are needed for radical airframe-, turbo-electric, hybrid propulsion and cryogenic scenarios as well
- Additionally, increasing fuel price => radical core concepts should be realized
- Double digit fuel burn improvements observed for all constant volume variants
 - Should be designed to minimize vibration, sealing loss and avoid high heat rejection to oil, and achieve all this at an exemplary reliability.
 - Way forward for ultra efficient cores

Despite unprecedented propulsion efficiency & extensive tech. inclusion SRIA2050 not reached

• Will require a more radical airframe.

Thank you!

4 Universities, 4 Industries, 1 Research Institute and 1 SME

