

Meshing and CFD strategies for large scale turboprop WT model integrating morphing high-lift devices

Stefan Wallin and Ardeshir Hanifi, KTH Faranggis Bagheri, neptech AB

Thanks to Song Chen and Peter Eliasson, KTH

Traditional CFD approach

Wind-tunnel experiment

- Wind-tunnel model
 - Interchangeable modules
 - Control surface settings
 - Measurements (sensors, balance, ...)
- Operation conditions
- Defined by a test matrix
- Generation of test database
 - Running the tests (computer controlled?)

CFD

- Geometry
- Meshing for fixed settings
- Operational conditions
- CFD
- Post processing
 - Comparison with test data
 - Possibly rerunning
- Collected in database

Test matrix CFD approach

Wind-tunnel experiment

- Wind-tunnel model
 - Interchangeable modules
 - Control surface settings
 - Measurements (sensors, balance, ...)
- Operation conditions
- Defined by a test matrix
- Generation of test database
 - Running the tests (computer controlled?)

Numerical experiment (CFD)

- Parameterized meshing model
 - Interchangeable modules
 - Control surface settings
 - Monitors (Cp, forces, ...)
- Operation conditions + CFD settings
- Defined by a CFD test matrix
- Generation of CFD database
 - Running the CFD (python controlled)

High-Fidelity meshing

Automatic meshing

- Specific geometry (one setting)
- Automatic meshing
 - Fast remake for each setting
 - Triangular surface mesh
 - Prismatic layers
 - Refinement zones
 - Decent compromise accuracy size

Hi-Fi parameterized meshing

- Parameterised geometry (all settings)
- Meshing script
 - Manual work made once
 - Carefully designed surface mesh
 - Structured and unstructured patches
 - Parameterised mesh settings
 - Best accuracy size

WTM-RECYCLE – CleanSky 2

- CleanSky-II EU project
 - Leonardo regional aircraft
 - 3 partners, KTH coordinator
- Large-scale turboprop WT model
 - Wing-propellers-fuselage-tail model
 - Natural Laminar wing design
 - Novel morphing high-lift devices

- WT model design and manufacturing
 - Large size ~5m
 - Modular devices and wing profiles
- WT testing at RUAG-LWTE
 - Running propellers
- CFD
 - Validation
 - Extrapolation to full scale

Example

- ~30M nodes
- 2h on 128 cores
- RANS EARSM model
- Propeller disk model
- Take-off condition
 - Drooped nose
 - High propeller thrust
- Skin friction plot
 - Asymmetric
 - co-rotating props

WTN

WTN

- Automatic CFD
 - Python script
- Meshing model
 - Scripted
 - Pointwise software
- CFD test matrix
 - Geo modules
 - Ctrl surface settings
 - Propeller setting
 - Flow conditions
 - Etc

Meshing with Pointwise

Faranggis Bagheri

Surface Mesh

Structured mesh on important regions, quad dominant mesh on the remaining parts

Surface Mesh

Anisotropic cells (T-Rex) on quad-dominant surfaces matching structured parts

Use of scripting to automate creation of volume mesh

- TE and LE configurations
- First layer height
- Growth rate
- Pointwise volume mesh settings
- Matching the mesh of propeller with the given first layer height and growth rate

```
# This script loads the surface mesh file and generates the volume mesh
# export the mesh to Edge format.
  -- INITIALIZATION
# -- Load Glyph package, initialize Pointwise, and
   -- define the working directory.
# Load Glyph and Tcl Data Structure Libraries
package require PWI Glyph
# Initialize Pointwise
pw::Application reset
pw::Application clearModified
# Define Working Directory
set scriptDir [file dirname [info script]]
# -- USER-DEFINED PARAMETERS
# --
# -- Define a set of user-controllable settings.
#
set fileName
                       "SurfaceMesh.pw"; # Aircraft surface mesh filename
set droopedLE
                                     0; # 0 for normal LE, 1 for drooped LE
                                     0; # 0 for take off, 1 for cruise, 2 for landing
set TEposition
set initDs
                                 0.002; # Initial wall spacing for boundary layer extrusion
                                  1.15; # Growth rate for boundary layer extrusion
set growthRate
```

Flygteknik, 9 October 2019

Main block volume mesh

Volume mesh settings

The gap between flaps

The gap between wing and flap

Flygteknik, 9 October 2019

Volume mesh around the tail wing

Flygteknik, 9 October 2019

UHURA – H2020

- H2020 EU project
 - 12 partners, DLR coordinator
- Aerodynamics of Krueger device
 - Detailed experiments
 - CFD methodologies
- Quantification of aerodynamics
 - Still rather unknown
- Validation of CFD
 - Unsteady aerodynamics and dynamic loads
 - During deployment and retraction phase
- Qualification of impact on
 - handling qualities and certification

Deployment of vented folding bull-nose Krueger device developped in EC-FP7 funded project DeSiReH

UHURA – Validation wind-tunnel tests

DLR-F15-LLE in ONERA L1 DLR-F15S in DNW-NWB DLR-ONERA CRP LEAFCO LuFo V project MOVE.ON DLR-F15LS in DNW-LLF EC project OPENAIR

600 mm chord 2.4 m span (0°) 2 m span (30°)

1200 mm chord 7 m span

U-RANS of Kruger flap deployment

- Mesh deformation
- Automatic remeshing using Pointwise script

Hybrid RANS-LES

Mesh

- Spanwise: 2 Krueger flap chord length
 - Translational periodical boundaries
- Hybrid structure-unstructured grid
 - ~ 12 million cells
- Numerical method
 - Spalart-Allmaras DDES
 - Central scheme with artificial dissipation in space
 - Implicit scheme in time
 - CFL=0.2 in LES region
 - Explicit 4-stage Runge-Kutta within each time step
 - Multigrid + implicit residual smoothing

Hybrid RANS-LES computations

Mach 0.0e+00 0.04 0.06 0.08 0.1 0.12 0.14 0.16 2.0e-01

HURA

Meshing strategy

- Hybrid mesh strategy
- Structured zone
 - Equidistant
 - LES resolution
 - $-\left(\Delta x,\Delta y,\Delta z\right)\approx\left(2,1,1\right)$
- Boundary layer mesh
 - RANS near-wall resolution
- Unstructured zones
 - Best compromise

Conclusions

- High-Fidelity CFD requires High-Fidelity meshing
 - Hybrid structured and unstructured surface mesh
 - Structured BL mesh and zones where high accuracy is needed
 - Automatic meshing models corresponds to WT models
 - Contains all test settings and parts
 - Requires man work
 - Requires software with scripting capabilities as e.g. Pointwise
- Test-matrix driven CFD
 - Automatic generation of CFD database
 - Setting and module variations through meshing script

Acknowledgement

The projects leading to this presentations have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 755605 for WTM-RECYCLE and No 769088 for UHURA

Computational resources are provided by the Swedish National Infrastructure for Computing (SNIC)

