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Swept wing boundary layer

• Sweep angle and pressure grandient 
results in curved streamlines.

• Inside the boundary layer imbalance of 
centrifugal and pressure forces creates a 
crossflow.

• The crossflow profile has an inflection 
point.

[1] D. Tempelmann, Receptivity of crossflow-dominated boundary layers ,
Ph.D. Thesis, 2011 .

[2] S. Saric et al., Stability nad Transition of Three-Dimensional boundary layers, Annual
Review of Fluid Mechanics, 2003

[2]
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Main goal: Critical size roughness element.

Parameters:
• Sweep angle = 35°
• Angle of attack = -5°
• Velocity (m/s) = 9, 18, 27
• Height R-E (mm) = 0.2, 0.4, 0.8
• Diameter R-E (mm) = 8, 16, 32
• Turbulence level = 0.03%, 0.3%, 0.8%

RECEPT Experiment

[1] R. Örlü , N. Tillmark, P. H. Alfredsson, Measured  critical size of roughness element, 
RECEPT project Technical Report TR D1.14, (2015) 

[1]
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RECEPT Experiment

[1] R. Örlü , N. Tillmark, P. H. Alfredsson, Measured  critical size of
roughness element, RECEPT project Technical Report TR D1.14, (2015) 
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Simulation Setup

1. Reynolds-Averaged Navier-Stokes simulation to get initial and 
boundary condition for direcet numerical simulations (DNSs)

2. Two dimensional DNSs to obtain the reference flow field.

• Numerical domain equal to dimensions of the wind tunnel
• Rans performed with Fluent using as turbulence model
• Transition imposed at x/c = 0.7 on upper surface and x/c = 0.1  
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Comparison Boundary layer solver and 2D DNSs
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Boundary layer at the roughness element location
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Boundary layer at the roughness element location



L. De Vincentiis

Results: Direct Numerical Simulations
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Results: Direct Numerical Simulations

We can observe high and low speed streaks behind the roughness
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For the case                                   transition is observed

Isosurface of spanwise velocity coloured 
by x velocity
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Results: Direct Numerical Simulations

Friction coefficient
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Impulse-Response

Linear analysis:

Initial condition: Wave-packet disturbance

placed upstream the RE and alligned with streamline.

We studied the evolution of the initial disturbance .

Brynjell-Rahkola et al, Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary 
layer with discrete surface roughness, JFM, 2017.

Bech et al, Linear and non linear development of localized disturbances in zero and adverse pressure 
gradient boundary-layers, Phys. Fluids, 1998.
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Linear Analysis: Impulse-Response
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Results: Direct Numerical Simulations

Friction coefficient
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Results: Direct Numerical Simulations

Isosurface of negative (blue) and positive (red) 
streamwise velocity.
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Conclusions

For                                                 we can observe different scenario 
depending on the level of disturbance :

For                    a steady solution is found for every aspect ratio 
investigated.

For                          disturbances grows traveling downstream and 
forms turbulent spots.

For                        transition take places in the low speed region 
behind the roughness.

For                                               transition take place without 
introducing any disturbance.
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Thank you  for  your attention.

Any questions?
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Conclusions

• For                                          steady solutions are obtained for all
diameters.

• Impulse response analysis showed that the disturbance weakly
grows up to                      downstream the roughness and that
the disturbance is adavected dowstream.

• For                  we can observe transition without introducing any
other disturbance.

• Transition take place for                        when a we introduce a 
free stream turbulence

• When we consider a turbulence level                          turbulent
spots are generated and then advected downstream

• For both turbulence levels of free stream turbulence the results
are consistent with the observation of the experiment
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Comparison Boundary layer solver and 2D DNSs
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Nek5000

Numerical domain decomposed in hexahedral elements

Variables expressed in terms of Lagrange interpolants on the 
Gauss-Lobatto-Legendre quadrature points.

Continuity enforced at the boundaries of each element

N points used for velocity, N-2 for pressure to avoid spurious modes

Third-order implicit discretization in time for viscous terms and third-
order explicit for the non-linear terms
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Swept wing boundary layer

• Sweep angle and pressure grandient 
results in curved streamlines.

• Inside the boundary layer imbalance of 
centrifugal and pressure forces creates a 
crossflow.

• The crossflow profile has an inflection 
point.

[1] D. Tempelmann, Receptivity of crossflow-dominated boundary layers ,
Ph.D. Thesis, 2011 .

[2] S. Saric et al., Stability nad Transition of Three-Dimensional boundary layers, Annual
Review of Fluid Mechanics, 2003
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Nek5000 [1]

Incompressible Navier-Stokes solver

The equations are solved using a Spectral Element Menthod [2]

Complex geometries and high order method

Highly scalable code [3]

[1] Fisher et al. Nek5000 web page. http://nek5000.mcs.anl.gov, 2008
[2] Patera, A.T. “A spectral element method for fluid dynamics :
laminar flow in a channel expansion.” J. Comput. Phys. 54:468–488, 1984

[3] Offermans et al., On the strong scaling of the spectral element solver 
Nek5000 on petascale systems. Proceedings of the EASC ’16 conference, 2016
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Simulation Setup

1. Reynolds-Averaged Navier-Stokes simulation to get initial and 
boundary condition for direcet numerical simulations (DNSs)

2. Two dimensional DNSs to obtain the reference flow field.

• Numerical domain equal to dimensions of the wind tunnel
• Rans performed with Fluent using as turbulence model
• Transition imposed at x/c = 0.7 on upper surface and x/c = 0.1  
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