

Transition in a swept-boundary layer subject to surface roughness and free-stream turbulence

Luca De Vincentiis¹, Dan S. Henningson ¹ and Ardeshir Hanifi¹

¹ Linné FLOW Centre, KTH Mechanics

Introduction

D. Hills, Airbus Challange Future Aircraft Technology and Challenges, Flight Physics Center of Competence, Airbus

[1] Von Doenhoff, A.E., Braslow, A.L., The effect of distributed surface roughness on laminar flow, Boundary Layer and Flow Control- Its Principles and Application, 657-681

Swept wing boundary layer

- Sweep angle and pressure grandient results in curved streamlines.
- Inside the boundary layer imbalance of centrifugal and pressure forces creates a crossflow.
- The crossflow profile has an inflection point.

 $\left[1\right]$ D. Tempelmann, Receptivity of crossflow-dominated boundary layers , Ph.D. Thesis, 2011 .

[2] S. Saric *et al.*, Stability nad Transition of Three-Dimensional boundary layers, Annual Review of Fluid Mechanics, 2003

sweep

RECEPT Experiment

Main goal: Critical size roughness element.

Parameters:

- Sweep angle = 35°
- Angle of attack = -5°
- Velocity (m/s) = 9, 18, 27
- Height R-E (mm) = 0.2, 0.4, 0.8
- Diameter R-E (mm) = 8, 16, 32
- Turbulence level = 0.03%, 0.3%, 0.8%

[1] R. Örlü, N. Tillmark, P. H. Alfredsson, Measured critical size of roughness element, RECEPT project Technical Report TR D1.14, (2015)

[1]

RECEPT Experiment

Test cases, roughness elements (R-E) diameters (mm) within the red boarder										
R-E height [µm]	Grid #: Speed U _{MTT} [m/s]	0 (Tu =0.03%)			1 (Tu =0.3%)			2 (Tu =0.8%)		
200	9	8	16	32	8	16	32	\ge	\ge	\ge
	18	8	16	32	8	16	32	\ge	\succ	imes
	27	8	16	32	8	16	32	8	16	32
400	9	8	16	32	8	16	32	8	16	32
	15	imes	imes	imes	imes	\succ	imes	\succ	16	imes
	17	8	imes	imes	imes	imes	imes	\ge	imes	imes
	18	8	16	32	8	16	32	8	16	32
	22	\succ	16	\succ	\succ	16	\succ	\succ	\succ	\times
	27	8	16	32	8	16	32	8	16	32
800	9	8	16	32	8	16	32	\succ	\succ	\times
	18	8	16	32	8	16	32	\succ	imes	imes
	27	8	16	32	8	16	32	\ge	\ge	\times
	No observable effect:		Slight effect:			Effect:		Tra	nsition :	

[1] R. Örlü, N. Tillmark, P. H. Alfredsson, Measured critical size of roughness element, RECEPT project Technical Report TR D1.14, (2015)

Simulation Setup

- 1. Reynolds-Averaged Navier-Stokes simulation to get initial and boundary condition for direcet numerical simulations (DNSs)
 - Numerical domain equal to dimensions of the wind tunnel
 - Rans performed with Fluent using $k \omega$ as turbulence model
 - Transition imposed at x/c = 0.7 on upper surface and x/c = 0.1
- 2. Two dimensional DNSs to obtain the reference flow field.

Comparison Boundary layer solver and 2D DNSs

Boundary layer at the roughness element location

Boundary layer at the roughness element location

We can observe high and low speed streaks behind the roughness

For the case d/h = 20 $h = 2.0 \,\delta^*$ transition is observed

For the case d/h = 20 $h = 2.0 \delta^*$ transition is observed

Friction coefficient

Impulse-Response

Linear analysis:

Initial condition: Wave-packet disturbance

 $\psi = xy^3 e^{-(x^2 + y^2 + z^2)} \qquad (u, v, w) = (\psi_y, -\psi_x, 0)$

placed upstream the RE and alligned with streamline.

We studied the evolution of the initial disturbance .

Brynjell-Rahkola *et al*, Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness, JFM, 2017.

Bech *et al*, Linear and non linear development of localized disturbances in zero and adverse pressure gradient boundary-layers, Phys. Fluids, 1998.

$$d/h = 20$$
 $h = 1.44 \, \delta^*$

$$d/h = 20$$
 $h = 1.44 \,\delta^*$

$$d/h = 20$$
 $h = 2.0 \,\delta^*$

$$d/h = 20 \quad h = 2.0 \,\delta^*$$

For the case d/h = 20 $h = 1.44 \,\delta^*$ $Tu \approx 0.3\%$ transition is observed

L. De Vincentiis

Results: Direct Numerical Simulations

For the case d/h = 20 $h = 1.44 \,\delta^*$ $Tu \approx 0.3\%$ transition is observed

Friction coefficient

$$d/h = 20$$
$$h = 2.0\delta^*$$
$$Tu \approx 0.0\%$$

Isosurface of negative (blue) and positive (red) streamwise velocity.

d/h = 20 $h = 1.44\delta^*$ $Tu \approx 0.3\%$

Conclusions

For $h=1.44\delta^*\,(Re_{hh}=461)\,$ we can observe different scenario depending on the level of disturbance :

For $Tu\approx 0\%$ a steady solution is found for every aspect ratio investigated.

For $Tu\approx 0.03\%~$ disturbances grows traveling downstream and forms turbulent spots.

For $Tu\approx 0.3\%\,$ transition take places in the low speed region behind the roughness.

For $h = 2.0\delta^*$ $(Re_{hh} = 712)$ transition take place without introducing any disturbance.

Thank you for your attention.

Conclusions

- For $h = 1.44\delta^* \ (0.8 \ mm)$ steady solutions are obtained for all diameters.
- Impulse response analysis showed that the disturbance weakly grows up to x/c = 0.1 downstream the roughness and that the disturbance is adavected dowstream.
- For $h = 2\delta^*$ we can observe transition without introducing any other disturbance.
- Transition take place for $h=1.44\delta^*\,$ when a we introduce a free stream turbulence $\,Tu\approx 0.3\%\,$
- When we consider a turbulence level $\,Tu\approx 0.03\%\,$ turbulent spots are generated and then advected downstream
- For both turbulence levels of free stream turbulence the results are consistent with the observation of the experiment

Comparison Boundary layer solver and 2D DNSs

Introduction

D. Hills, Airbus Challange Future Aircraft Technology and Challenges, Flight Physics Center of Competence, Airbus

FLOW L. De Vincentiis

$$\phi = 16 \, mm, \ h = 1.44 \delta^*$$

d/h = 20 $h = 1.44\delta^*$ $Tu \approx 0.0\%$

Var. y_velocity 5.000 0.002500 0.00500 0.007500 0.01000 Mar. 0.0778 Min: 0.000

d/h = 20 $h = 2.0\delta^*$ $Tu \approx 0.0\%$

0.000 0.002200 0.02000 0.02/200 0.01000 Max 0.1005 Max 0.000

d/h = 20 $h = 1.44\delta^*$ $Tu \approx 0.0\%$

2000 2002200 200500 2007200 201000 Max 207978 Min: 2000

0.000 0.002500 0.005000 0.007500 0.01000

Max: 0.08052 Min: 0.000

Produced

$$h = 1.44\delta^*$$
$$Tu \approx 0.3\%$$

FLOW

L. De Vincentiis

d/h = 20

d/h = 20 $h = 2.44\delta^*$ $Tu \approx 0.0\%$

$$d/h = 20$$
$$h = 1.44\delta^*$$
$$Tu \approx 0.3\%$$

0.000 0.002.000 0.00000 0.00000 0.00000

Max: 0.1065 Min: 0.000

- Von Doenhoff, A.E., Braslow, A.L., The effect of distributed surface roughness on laminar flow, Boundary Layer and Flow Control- Its Principles and Application, 657-681 (1961)
- Loiseau, J., Robinet, J., Cherubini, S., Leriche, E., Investigation of the roughnessinduced transition: global stability analyses and direct numerical simulations, J. Fluid Mech., 760, 175-211 (2014)
- Bucci, M., Puckert, D., Andriano, C., Loiseau, J., Cherubini, S., Robinet, J., & Rist, U. Roughness-induced transition by quasi-resonance of a varicose global mode. Journal of Fluid Mechanics, 836, 167-191 (2018)

Nek5000

Numerical domain decomposed in hexahedral elements

Variables expressed in terms of Lagrange interpolants on the Gauss-Lobatto-Legendre quadrature points.

$$u(\mathbf{x}) = \sum_{i=1}^{n} \hat{u}_i \phi_i(\mathbf{x})$$

Continuity enforced at the boundaries of each element

N points used for velocity, N-2 for pressure to avoid spurious modes

Third-order implicit discretization in time for viscous terms and thirdorder explicit for the non-linear terms

Swept wing boundary layer

- Sweep angle and pressure grandient results in curved streamlines.
- Inside the boundary layer imbalance of centrifugal and pressure forces creates a crossflow.
- The crossflow profile has an inflection point.

[1] D. Tempelmann, Receptivity of crossflow-dominated boundary layers , Ph.D. Thesis, 2011 .

[2] S. Saric *et al.*, Stability nad Transition of Three-Dimensional boundary layers, Annual Review of Fluid Mechanics, 2003

sweep

angle

Nek5000 [1]

Incompressible Navier-Stokes solver

$$\frac{\partial u_i}{\partial x_i} = 0$$
$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{\partial p_i}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_i^2} + f_i$$

The equations are solved using a Spectral Element Menthod [2]

Complex geometries and high order method

Highly scalable code [3]

[1] Fisher *et al.* Nek5000 web page. http://nek5000.mcs.anl.gov, 2008
[2] Patera, A.T. "A spectral element method for fluid dynamics : laminar flow in a channel expansion." J. Comput. Phys. 54:468–488, 1984
[3] Offermans *et al.*, On the strong scaling of the spectral element solver
Wek5000 on petascale systems. Proceedings of the EASC '16 conference, 2016

- Von Doenhoff, A.E., Braslow, A.L., The effect of distributed surface roughness on laminar flow, Boundary Layer and Flow Control- Its Principles and Application, 657-681 (1961)
- Kurz, H., & Kloker, M. Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. Journal of Fluid Mechanics, 796, 158-194, (2016).
- Brynjell-Rahkola, M., Shahriari, N., Schlatter, P., Hanifi, A., & Henningson, D. Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness. Journal of Fluid Mechanics, 826, 830-850, (2017).

Simulation Setup

- 1. Reynolds-Averaged Navier-Stokes simulation to get initial and boundary condition for direcet numerical simulations (DNSs)
 - Numerical domain equal to dimensions of the wind tunnel
 - Rans performed with Fluent using $k \omega$ as turbulence model
 - Transition imposed at x/c = 0.7 on upper surface and x/c = 0.1
- 2. Two dimensional DNSs to obtain the reference flow field.

