

Aerodynamics and Aeroacoustics of Highly-Heated Rectangular Supersonic Jets

Mihai Mihaescu and Song Chen

KTH Royal Institute of Technology – Teknisk Mekanik

mihaescu@kth.se

- Background
- Motivation and Objectives
- Nozzle configuration & Operating conditions
- Numerical Method
 - Method and Computational set-up (LES & FW-H Acoustic Analogy)
 - Verification and Validation
- Temperature effects on near-field flow and far-field acoustics
- Summary and Conclusions
- Outlook

Background

- Supersonic jets & Aerospace applications
- Challenges with new supersonic civil & military aircrafts
 - Sonic Boom & Supersonic Jet Noise
 - o Community noise
- Acoustic radiation is a powerful excitation in the near-field
 - undesirable stresses on nearby components of the aircraft (take-off / lift-off conditions)
 - stressful stimulus for the crew, and those in the runway or carrier deck environment
- Rectangular shaped nozzles
 - o Tight integration with airframe
 - Potential of reducing noise signature (minor-axis)
 - o Thrust vector control potential
 - $\circ\,$ Ease of design and manufacture

Lockheed Martin X-59 QueSST https://en.wikipedia.org/wiki/Lockheed_Martin_X-59_QueSST

Installation configurations for a Silent Aircraft; Hall & Crichton www.acoustics.org

Space tourism: Virgin Galactic spaceship www.cnn.com

Motivation & Objective

- Flow control for noise suppression technologies are required
- Current supersonic jet noise reduction techniques are mainly developed based on laboratory-scale and relatively low-temperature jet data
 - Challenges with measuring flow inside the nozzle and the dynamics associated with supersonic & high-temperature flows
 - Jet & Shock-waves dynamics
 - o Temperature limitations with the test rig
- Practical high-performance jets are highly-heated (T_t > 2000 K)
 - o Limited understanding of noise generation process in highly-heated jets
- Objective: to gain insights on the noise generation mechanism in highlyheated supersonic jets
 - Focus on rectangular shaped nozzle (2:1 AR)
 - o Use of Large Eddy Simulation approach and FW-H Acoustic Analogy

Nozzle configuration & Design parameters

- University of Cincinnati rectangular nozzle
 - Rectangular shape with an aspect ratio 2:1, sharp throat
 - Lab scale: height in the minor axis plane is 12.95 mm
 - o Design Mach 1.5 at NPR 3.67 and TR 1.0
- Nozzle pressure ratio (NPR) and temperature ratio (TR)

Mora, P., Baier, F., Kailasanath, K., & Gutmark, E. J., Acoustics from a rectangular supersonic nozzle exhausting over a flat surface, JASA, 140(6), 4130-4141, (2016).

2019-10-23, Mihai Mihaescu, Associate Professor, KTH-Teknisk Mekanik, mihaescu@kth.se

Courtesy of Prof. Ephraim Gutmark, the Gas Dynamic and Propulsion Lab, University of Cincinnati 5

Operating conditions

- Effects of temperature ratio (TR)
 - Nozzle pressure ratio (NPR) 3.0 → over-expanded
 - Nozzle temperature ratio (TR) 1.0, 2.0, 4.0, 7.0 \rightarrow Max T_t ~ 2100 K
 - \circ Air dissociation \rightarrow air properties change (e.g. gamma)
 - \circ Ideally expanded Mach number M_i and velocity u_i increase with TR
 - \circ Reynolds number \rightarrow one order of magnitude decrease

Case	NPR	TR	M_j	$u_j(m \cdot s^{-1})$	$T_j(K)$	Re		ρu _i D _{ea}	$u_i D_{ea}$
JetTR1	3.0	1.0	1.36	399	214	$9.61 imes 10^5$	Re =	<u> </u>	=
JetTR2	3.0	2.0	1.36	564	430	3.96×10^5		μ	U
JetTR4	3.0	4.0	1.37	801	885	$1.67 imes 10^5$			
JetTR7	3.0	7.0	1.39	1070	1592	$0.85 imes 10^5$			

Numerical Method

- Compressible "in-house" finite volume-based flow solver
 - Turbulence by means of implicit Large Eddy Simulation (LES) approach, with Jamesontype artificial dissipation mechanism; *Gojon, Gutmark, Mihaescu (2017), AIAA-2017-0002.*
 - o Second-order central difference for space discretization
 - Four-stage Runge-Kutta for time integration
- Computational grid
 - Sponge zone + non-reflecting boundaries
 - 160 M cells \rightarrow 960 CPUs
- Acoustic far-field: Ffowcs Williams-Hawkings (FW-H) acoustic analogy

2019-10-23, Mihai Mihaescu, Associate Professor, KTH-Teknisk Mekanik, mihaescu@kth.se

PIV experimental data courtesy of Prof. Ephraim Gutmark, University of Cincinnati 7

Some flow validation results: Iow-temperature jets

Normalized time-averaged velocity data comparisons (TR1): LES vs. PIV

Aeroacoustic validation results: Iow-temperature jets

• Far-field overall sound pressure level (OASPL) comparisons

Time-averaged normalized axial velocity

Chen S., Gojon R. *and* Mihaescu M. (2018) High-Temperature Effects on Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet, *AIAA paper, AIAA 2018-3303*.

2019-10-23, Mihai Mihaescu, Associate Professor, KTH-Teknisk Mekanik, mihaescu@kth.se

Jet shear layer: convection Mach number

Instantaneous near field acoustics: M_a & pressure fluctuation

Chen S., Gojon R. and Mihaescu M. (2018) High-Temperature Effects on Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet, AIAA paper, AIAA 2018-3303.

Dynamics of the highly-heated jet: TR 7.0

3-D: isosurfaces of density + acoustic

Near field sound pressure level

Chen S., Gojon R. and Mihaescu M. (2018) High-Temperature Effects on Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet, AIAA paper, AIAA 2018-3303.

Pressure spectra analysis - screech

2019-10-23, Mihai Mihaescu, Associate Professor, KTH-Teknisk Mekanik, mihaescu@kth.se

Far field OASPL: FW-H approach

Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet, AIAA paper, AIAA 2018-3303.

2019-10-23, Mihai Mihaescu, Associate Professor, KTH-Teknisk Mekanik, mihaescu@kth.se

Conclusions – temperature ratio effects

- LES study of temperature effects on a rectangular supersonic jet
 - NPR 3.0, over-expanded jet
 - TR 1.0, 2.0, 4.0, and 7.0 (2100 K)
 - Temperature dependent air properties (gamma 1.4 \rightarrow 1.25)
- Flow field characteristics
 - Increased jet velocity but reduced jet potential core length
 - Increased shear layer convection Mach number (subsonic \rightarrow supersonic)
 - Slightly modified shock structures
- Acoustic field characteristics
 - Increased sound pressure levels in all directions and frequencies
 - Significantly strong Mach wave radiation
 - Screech tone exists (St decreases)

Challenges & Outlook

- Efficientely addressing the challenges related with high-fidelity CFD when it comes to supersonic jets
 - High-temperature effects in supersonic jets
 - Near-wall treatment inside the nozzle
 - Complex physics interplay (e.g. compressibility effects, shocks and vortexshock interaction, non-linearities, noise generation & acoustic radiation)
 - Non-reflective boundary conditions for acoustic waves
 - Real geometry effects, co-flow effects and NPRs effects
 - Developing flow control technologies

Acknowledgements

Asuka Gabriele Pietroniro, Lukas Schickhofer, Shyang Maw Lim, Roberto Mosca, Song Chen, Emelie Trigell, (Ghulam Majal missing).

S

PDC @ KTH Cray XC40 system 53632 cores (1676 nodes with 32 cores/node)

Some recent publications on the topic

- https://arc.aiaa.org/doi/abs/10.2514/1.J056936?journalCode=aiaaj
- https://arc.aiaa.org/doi/abs/10.2514/1.J057514
- https://arc.aiaa.org/doi/abs/10.2514/1.J057629
- https://arc.aiaa.org/doi/abs/10.2514/6.2019-2753
- https://arc.aiaa.org/doi/abs/10.2514/1.J057537
- <u>https://arc.aiaa.org/doi/abs/10.2514/6.2018-3303</u>
- https://arc.aiaa.org/doi/abs/10.2514/6.2017-3018
- https://arc.aiaa.org/doi/abs/10.2514/6.2017-0002