This document and the information contained herein is the property of Saab AB and must not be used, disclosed or altered without Saab AB prior written consent.

Static failure in components made of Al-Li AA2050 and Al AA7050 alloys

Rikard Rentmeester

Saab AB

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIED Rikard Rentmeester

Background and main issues

- AI-Li AA2050-T84 is superior to AI AA7050-T7451 regarding
 - Tensile strength
 - Stiffness
 - Density
 - Fatigure crack growth rate
- Cracks in AA2050 have shown a tendency to turn towards the material L-direction in
 - residual strength test
 - during fatigue crack growth
- Does the same phenomenon occur in static failure without previous crack growth?
- Are traditional sizing methods yet conservative?

Crack turning in residual fracture

Crack turning during fatigue

crack growth

Fracture

Fracture originating from notch without defect.

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIE Rikard Rentmees

Physical tests and numerical analyses

• Several non-standard tests were carried out in this investigation

- Physical tests
 - Reference tensile tests
 - Notched tensile tests
 - Bending tests
 - Bend-shear tests
- AI-Li AA2050-T84 and AI AA7050-T7451
- Test results were compared with
 - Analytical predictions
 - Finite element analyses

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIE Rikard Rentmeest

Notched tensile tests

- Open and filled hole
- Material directions L, LT, ST
- Variety of D/W and thickness
- Failure load close to $F = R_m A_{net}$
- Tension and compression

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIED Rikard Rentmeeste

Notched bending tests

- A four point bending test rig was developed
- Specimens with geometric features
 - Beams with holes (bending)
 - Beams with notches (bending)
 - I-sections with holes (shear)
- Specimens made of
 - AA7050-T7451
 - AA2050-T84

Bending tests with holes

Bending tests with notches

Bending shear test with holes

1A4

X

AA7050-T7451

 Cracking along L in both materials

Notch sensitivity

• AA7050-T7451 went through a larger overall plastic deformation than AA2050-T85

Shear with stress concentration

AA2050-T84

IAI

displacement [mm]

1AI

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIE Rikard Rentmeeste

9

•

ST

Shear test with holes

- Material AA2050-T84
- Offset hole
- Primary crack through hole
- Secondary crack in homogeneously strained area

cross head displacement [mm]

Shear test – finite element simulation

Strength anisotropy:

- Example: $R_{m,ST} \neq R_{m,L}$ Relation between shear and normal strength
- Al-Li : $\frac{\sigma}{\tau} \approx 2$

Normal stress

 σ_{ST}

11

• von Mises : $\frac{\sigma}{\tau} = \sqrt{3}$

Public | NOT EXPORT CONTROLLED | NOT CLASSIFIED Rikard Rentmeester SAAB

Analytical calculations

Predictions of failure loads were made with classical analytical methods

Bild 12

RR1 Rentmeester Rikard; 2019-09-24

Conclusions

- Fractures in AA7050-T7451 are in general perpendicular to the major principle stress
- Fractures in AA2050-T84 are prone to start or turn towards the L-direction
- The usual static sizing methods can be used
- Strength anisotropy must be accounted for in the sizing

