												FT	-2(01	9												
		1C)C	A	L	A	Ν	A		ſS	SIS	5 (DF	= /	\	Bŀ	-D		4	E٢	JS			V/	4 [•	
					-									~-	_							~-					
			Εľ	NS	E(G	KI		Y	S		Κl	J(JR	E	Sl	J	BI	E(
						•									N N	Л° Л			N		•						
							A	R	J		D	E	FC	ノド	S IY			IC		NC							
													Î	Izu	ka	V I	Paiv	ึ่งล	r i	Teix	eir	้ล	Р (-	ion	zal	6 7	
													J.		ita,	V. I	ur	vu,	L .		CII	ц,					
																								P.	Kur	ka	
													ہ اما			, _f	$\hat{\mathbf{C}}_{\mathbf{A}}$		in				ЛЛГ		Dra	• 	
													וווע	ver	SILY		Cd	Πμ	лп	สรา		ŲΑ		-	DId	ΖΠ_	

WHA	AT IS A TE	ENSEG	GRI [®]	ΤY	?													
Set oSet o	f rigid bodies u f cables under t	nder comp traction	oress	ion														
Set o	f cables is suffic	cient and I	nece	ssar	y to	o m	nair	nta	in :	sta	bili	ty						
		I.																
	[NASA 20	15]																
				•	•	•		•					•	•	•	•	•	•
	WHA Set o Set o	<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header></section-header>

BENEFITS OF TENSEGRITIES					
High structural efficiency					
Uniaxial stress -> easier material selection					
Controllable shape		• •	•	•	

- Controllable stiffness
- Efficient control strategies
- Deployable

	LONG ARMS/N	/IANIPUL/	ATORS	
	 Agile movements High precision 			
	 Lightness Low stiffness 			
	 Vibration issues 			
	How to solve these probl	ems?	AN	
•				
			• • • • • • • • • • • • • •	
				4

LINFAR STATIC ANA	1 V S I	Γ								
Find the stiffness (Skelton) matrix	then	{F} =	$= \int K$	·}[~	<i>u</i> }					
			Ĺ	·G](~)					
lotal number of nodes: <i>n</i>	• •	• •	•							
x_1	x ₂	X	n							
Nodes position matrix: $[N]_{3 \times n} = \mathcal{Y}_1 $	y_2	y	n 👘							
Z_1	Z_2	Z	n							
$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	• •		•							
Connectivity: $\{c_k\}_{n \times 1} = \{e_i\} - \{e_j\}$										
(0)										
$\lambda / h \circ n \circ (\circ) = \int 1 \int d \cdot d$										
where $\{e_i\}_{n \times 1} = \{1\} \leftarrow i$										
	• •									
				•	•	•		• •	•	•

ΙΙΝΙΓΛΟ ΟΤΑΤΙΟ ΑΝΙΑΙνοις														
LINEAR STATIC ANALYSIS														
Total number of members: <i>m</i>														
Connectivity matrix: $[C^T]_{n \times m} = [\{c_1\} \ \{c_2\} \ \dots \{c_m\}]$														
Members matrix: $[M]_{3 \times m} = [N]_{3 \times n} [C^T]_{n \times m} = [\{m_1\} \{m_2\} \dots \{m_m\}]$														
k^{th} member stifness: $[K_k]_{3n \times 3n} = \{c_k\}_{n \times 1} \{c_k^T\}_{1 \times n} \bigotimes [L_k]_{3 \times 3}$														
Where $[L_k]_{3\times 3} = s_k \left([I_3]_{3\times 3} - \frac{\{m_k\}_{3\times 1} \{m_k^T\}_{1\times 3}}{\ m_k\ ^2} \right) + K_B \cdot \frac{\{m_k\}_{3\times 1} \{m_k^T\}_{1\times 3}}{\ m_k\ ^2}$														
$s_k = \frac{F}{I}$														
$[K_{c}] = \sum_{i=1}^{m} [K_{i}] \qquad \qquad$														
$[H]_{i \times j} \bigotimes^{\vee} [G] = \begin{bmatrix} H_{21}[G] & H_{22}[G] & \cdots & H_{2j}[G] \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$														
$\begin{bmatrix} H_{i1}[G] & H_{i2}[G] & \cdots & H_{ij}[G] \end{bmatrix}$														
	•													

•																		
• /																		
•																		
•	• [)°E	C		ŀТ	- C												
•	•	\L		Ų		5												
•																		

EXPERIMENTAL PROCEDURE

- Class 2 tensegrity 2D tower pulled by nylon cable under known loads
- Loads : 0, 0.03, 0.044, 0.052,0.061 and 0.066 kgf
- Deformed configurations were instantly acquired from the grid behind.
- Silicone cables

MODAL ANALYSIS

CONCLUSIONS

Tensegrity systems offer many advantages over traditional structures, such as controllable stiffness, controllable shape and deployable geometry.

The natural frequency increases with a higher load

The slack cables produces shifts in natural frequencies

The methodology used to calculate the stiffness matrix and the deformation for nonlinear static analysis presented results with good agreement with the experimental ones.

