

Multilayered Thermal Barrier Coatings processed by Suspension Plasma Spraying

Satyapal Mahade, Per Nylén Department of Engineering Science, University West, Sweden

Gas Turbine Efficiency

- 1% increase in engine efficiency of a power plant of 300 MW would result in savings of:
 - more than \$ 2 M/year fuel costs
 - approx. 25 000 t/year reductions in CO₂
- How to increase efficiency? => Higher combustion temperature

6,5€/GJ fuel cost, 8000 h/a *Ref*: M. Oechsner, Siemens, TBC - Conference, Irsee, 2012

Thermal Barrier Coatings (TBCs)

- TBCs used in combustion and exhaust chamber for insulation
- Combustion temp. increased by 200-300°C
- Lower thermal conductivity and strain tolerance are desired

Why Suspension Plasma Spray (SPS)???

Courtesy: N. Curry, University West.

APS Microstructure

EB-PVD Microstructure

SPS Microstructure

SPS makes it possible to mimic EB-PVD to obtain columnar microstructure and SPS can also produce a large variety of microstructures

Example: RM 12

Motivation

To improve efficiency of gas turbine engines in order to lower harmful emissions (CO₂) and fuel costs

Challenges

Standard thermal barrier coating (TBC) material YSZ has limitations above 1200°C

- 1. Phase stability issues
- 2. High sintering rates
- 3. CMAS infiltration

Saudi Arabian desert sand

Icelandic Volcano

Schematic of CMAS degradation, Padture et al.

*Need for new ceramic materials which can overcome these drawbacks

Talk Focus

To investigate the Volcanic Ash (VA) infiltration resistance of new TBC materials and compare with standard 8YSZ TBC

Single Layer TBC	Double Layer TBC	Triple Layer TBC
YSZ (300 μm)	GZ (240 μm)	Dense GZ (40 µm)
		GZ (200 μm)
	YSZ (60 μm)	YSZ (60 μm)
Bond Coat (230 µm)	Bond Coat (230 µm)	Bond Coat (230 µm)
Substrate	Substrate	Substrate

Why Pyrochlores ???

Pyrochlores are promising TBC

candidates due to :

- 1. Lower thermal conductivity than YSZ
- 2. Phase stability up to the melting temperature
- 3. CMAS infiltration resistance

Experimental Work

- **Substrate**: Hastelloy-X plates (25 mm X 25 mm)
- **Bond coat**: NiCoCrAlY powder (AMDRY 386) using HVAF process (M3 Gun, UniqueCoat, U.S)
- Top coat: Axial III Plasma Gun (Mettech Corp., Vancouver, Canada) and suspension feeder Nanofeed 350 ™
- **Suspension properties:** Ethanol based GZ, 8YSZ and 48YSZ suspension with D₅₀ of 550nm provided by Treibacher Industrie AG, Austria. Solid load was kept at 25wt.% in all the three suspensions
- All the TBCs were processed using same spray parameters

Different TBCs sprayed by suspension plasma spray process

Note:

- & 8YSZ: 8 wt.% yttria in zirconia
- ✤ GZ: Gadolinium zirconate
- ✤ 48YSZ: 48 wt.% yttria in zirconia

Characterization of TBCs

1. Microstructural analysis:

SEM analysis of as sprayed and volcanic ash infiltrated TBCs

2. Surface topography analysis:

Stripe projection technique

3. Porosity evaluation:

Image Analysis at two different magnifications 300X and 5000X using Image J software

3. Phase analysis

XRD of as sprayed TBCs and after volcanic ash infiltration

- Isothermal test conditions were used
- 20 mg of the (Laki) ash was applied over an area 1cm²
- Temperature of exposure was 1250°C
- Time of exposure was 1 hour
- Free standing coatings were approximately
 550 µm thick

- Columnar microstructure for industry standard 8YSZ TBC was achieved
- Top surface view showed a cauliflower look-alike microstructure

- Columnar microstructure for GZ/YSZ double-layered TBC was achieved
- No delamination cracks were observed at the GZ/YSZ interface

- Columnar microstructure for 48YSZ TBC was achieved
- 48YSZ/8YSZ double layered TBC did not show delamination cracks

- Higher porosity content for 8YSZ TBC than GZ and 48YSZ TBCs
- Higher surface roughness for 8YSZ TBC than GZ and 48YSZ TBCs
- * Higher porosity and higher surface roughness would favor higher CMAS infiltration

Ca Ka1

<a1

Zr La1

Ca Ka1

ZrLa1

Top view SEM micrographs after volcanic ash (VA) infiltration

- 8YSZ top view SEM micrograph shows cauliflower like microstructure, indicating the complete infiltration of VA
- GZ and 48YSZ TBCs top view does not show cauliflower like microstructure, indicating the arrest of VA on the surface
- Top view SEM results confirm poor volcanic ash (VA) infiltration resistance of industry standard 8YSZ TBC

Conclusions

- Columnar microstructured TBCs of different composition (8YSZ, GZ, 48YSZ) could be produced by suspension plasma spray (SPS)
- 8YSZ TBC showed higher porosity content and higher surface roughness compared to GZ and 48 YSZ TBCs when deposited with identical spray parameters
- GZ and 48YSZ based TBCs were more resistant to volcanic ash infiltration than the industry standard 8YSZ TBC
- Among GZ and 48YSZ based TBCs, 48YSZ showed better volcanic ash infiltration resistance than GZ

Acknowledgements

- **Prof. Bill Clyne** and **Dr Catalina Taltavull** from **University of Cambridge**, U.K, for providing Icelandic Volcanic Ash
- Mr. Stefan Björklund from University West, Sweden for spraying the TBCs
- Dr. Nicholas Curry, Treibacher Industrie AG, Austria for providing the suspension
- KK foundation (Dnr: 20140130), Sweden, for funding this work

Thank you for your attention Most welcome to Trollhättan!