

Heat Treatment of AM Parts by Hot Isostatic Pressing

Jim Shipley Global Business Development Manager Hot and Cold Isostatic Pressing James.shipley@quintusteam.com

Isostatic Pressing

- Isostatic pressing is a forming process that applies equal pressure in all directions on a product, compacting the workpiece uniformly from all sides
 - This results in maximum uniformity of density and microstructure without the geometrical limitations of uniaxial pressing
- Hot Isostatic Pressing (HIP) is used to fully consolidate parts at elevated temperatures.
 - Temperatures are usually 500-2,000°C (932-3,632°F)
 - Pressures are usually 100-200 MPa (15,000 to 30,000 psi)
 - Gas used is typically argon

- The densification process is a combination of
 - Plastic deformation
 - Creep
 - Diffusion

Design of Quintus[®] pressure vessels - Core Technology

- Wire wound vessel gives a reduced footprint whilst decreasing the frequency needed for safety inspections
- The Patented Quintus URC[®] furnace technology includes a fan or nozzle for forced convection cooling
- High cooling rates allow combined heat treatment cycles

URC® and URQ® are registered trademarks of Quintus Technologies AB

What is Hot Isostatic Pressing used for?

- Refining a product
 - HIP is used as an extra process step to achieve better material properties
- Producing a product
 - HIP is used to produce the product ready for final post processing steps such as grinding or machining

- Densification of products produced by
 - Casting
 - Metal Injection Moulding (MIM)
 - Additive Manufacturing / 3D printing
 - Cladding
 - Diffusion bonding

- Compaction of powder
 - Powder billets
 - Tool steel
 - Near-Net-Shape (NNS)
 - Sputtering targets

Hot Isostatic Pressing

As-cast / MIM / 3D print

Powder Metallurgy

Hot Isostatic Pressing

Pores Eliminated

Near-Net-Shape Product

HIP of components with residual porosity

- HIP is used to remove porosity in metal parts
 - Internal porosity in Castings is always present after solidification due to material shrinkage
 - Micro porosity in MIM and 3D-printed components
- The combination of high temperature and high isostatic pressure will remove residual porosity
 - Temperature typically 80-90% of melting temperature
 - Pressure up to 2070 bar of Argon gas
 - At these pressures the gas acts as a liquid

As-printed material

- Internal defects as-printed
 - Lack-of-fusion porosity
 - Gas porosity etc.
 - Oxides
 - Micro cracks
- Internal defects means
 - Stress concentrations
 - Crack initiation points
- Negative influence on
 - Fatigue
 - Ductility
 - Fracture toughness

Why HIP?

- Elimination of internal defects gives:
 - Elimination of stress concentrations and crack initiation points
- Superior material properties
 - Drastically increased fatigue life 10 100x
 - Increased ductility and fracture toughness
 - Reduced scatter
 - More predictive material properties
 - Increased lowest design values
- Improved machined/polished surface quality
 - Increased fatigue, corrosion, optical, sealing and esthetic properties

*Courtesy of: Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components, S. Tammas-Williams et al, September 2016, Scripta Materialia 122:72–76

Variations in AM - Variables

Courtesy of Oak Ridge National Laboratory

Variations in AM – Build plate position

- Example (EBM T64):
 - Sample position on the build plate =>
 - Variation in porosity

Courtesy of Oak Ridge National Laboratory

Typical AM operations

- Design
- Shrinkage calculation
- Powder selection
- Powder sourcing
- Powder handling
- Cleaning of AM system
- Evacuation / Purging
- Pre-heating

- Printing hatch pattern ٠
- In-situ monitoring
- Recycling of powder
- Support removal ٠

٠

٠

•

- Recycling of build plate •
- Cleaning
- HIP ٠
- Heat treatment
- Machining
- Chemical milling •
- Abrasive flow machining •
- Sand blasting
- Short peening ٠
- Coating

High Pressure Heat Treatment

Typical AM process flow

Possible process flow

Laser PBF Factory of the Future

Comined HIP and heat treatment cycle for In718

- The typical HIP cycle for PBF IN718 according to ASTM F3055- 4a that has been combined with the typical heat treatment for this alloy including solutionizing, rapid cooling and a dual temperature ageing according to AMS5663N. As can be seen the full process can be performed in the HIP.
 - It is also possible to take the parts out after the combined HIP, solutionize and rapid cooling step and perform the 18+ hour ageing in another furnace if that is more efficient.
- Micro-hardness measurements showed a benefit of combining the cycles

URQ® is a registered trademark of Quintus Technologies AB

Recent results confirm the same

Post-treatment Cycle

HIP	1200 °C/ 120 MPa/ 4 h/ RC (approximately 42 °C/min)
HIP + HT	1185°C/170MPa/3h/FC (approx. 13°C/min) to solutionizing
	temperature (980 °C)
	Solution treatment (ST): 980 °C/ 157 MPa/ 1 h/ RC to RT $$
	Aging: 740 °C/138 MPa/ 8 h/ FC to 635 °C/131 MPa/ 10 h/ RC
	to RT

Note: FC, RC, and RT denote furnace cooling, rapid cooling, and room temperature, respectively.

Fig. 17. Microhardness of as-built and post-treated specimens, where BD and TD denote build and transverse direction, respectively.

Effect of post-treatments under hot isostatic pressure on microstructural characteristics of EBM-built Alloy 718

Sneha Goel^{a,*}, Anumat Sittiho^b, Indrajit Charit^b, Uta Klement^c, Shrikant Joshi^a

^a Department of Engineering Science, University West, Trollhättan, Sweden
^b Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844, USA
^c Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden

Direct quench from HIP-temperature from β-region

- Direct quench from HIP-temperature from β-region
 - Heat treatment specifications for TiAl6V4 suggest water quench for maximum strength.
 - Literature and CCT-diagram suggest quench rates in the range of 500-3000 K/min during the phase transition (900° → 750°C)
- Experiment:
 - TiAl6V4 samples were quenched by URC[®] /URQ[®]. Gas quench rates in the range of 300-6000 K/min were recorded.
 - Fine acicular ferrite with UTS >1000MPa was reproduced reliably.

URC® and URQ® is a registered trademark of Quintus Technologies AB

HIP above β-transus temperature HIP for Ti-6AI-4V

- Anisotropic microstructure and properties
- Possibility to erase variations and anisotrophy with above β-transus HIP (e.g.1100 °C)?
 - Yes, but fast cooling needed for mechanical properties
- Ongoing work at ORNL

As-printed columnar structure

After HIP with quench equiaxed structure

Conclusions and discussion

- Heat treatment cycles can be included in the HIP cycles used for AM parts.
- The total AM build process time can be reduced using high pressure heat treatment.
- Improved mechanical properties and the predictability of processes facilitates a robust move from prototyping to production.
- Lean AM Manufacturing[™] can be facilitated through the reduction of process steps and improved document handling with modern HIP equipment at the centre of the production chain.

